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Abstract

The development of an accurate model of uncertainties for the control of structures
that undergo a change in operational environment, based solely on modeling and ex-
perimentation in the original environment is studied. The application used through-
out this work is the development of an on-orbit uncertainty model based on ground
modeling and experimentation. A ground based uncertainty model consisting of mean
errors and bounds on critical structural parameters is developed. The uncertainty
model is created using multiple data sets to observe all relevant uncertainties in the
system. The Discrete Extended Kalman Filter is used as an identification/parameter
estimation method for each data set, in addition to providing a covariance matrix
which aids in the development of the uncertainty model. Once ground based modal
uncertainties have been developed, they are localized to specific degrees of freedom
in the form of mass and stiffness uncertainties. Two techniques are presented: a ma-
trix method which develops the mass and stiffness uncertainties in a mathematical
manner; and a sensitivity method which assumes a form for the mass and stiffness
uncertainties in macroelements and scaling factors. This form allows the derivation
of mass and stiffness uncertainties in a more physical manner. The mass and stiffness
uncertainties of the ground based system are then mapped onto the on-orbit system,
and projected to create an analogous on-orbit uncertainty model in the form of mean
errors and bounds on critical parameters. The Middeck Active Control Experiment
is introduced as experimental verification for the localization and projection methods
developed. In addition, closed loop results from on-orbit operations of the experiment

verify the use of the uncertainty model for control analysis and synthesis in space.
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Chapter 1

Introduction

1.1 Motivation

Practical control design for space structures typically requires a very accurate model
of the dynamics, in addition to a robust control design procedure. Two common
approaches exist for developing a model for designing on-orbit controllers: 1) a model
of the structure is made prior to flight, and controllers are designed based upon this
model, 2) an on-orbit identification is performed and controllers are designed based
upon this measurement model. In this era of higher performing, low cost experiments,
option (1) uses test heritage to increase performance and avoid catastrophic failure,
while avoiding the costly on-orbit (re)design of the control system.

To develop the most accurate model possible for control design on a space structure
prior to flight, extensive ground modeling and testing must be performed. Figure 1.1
shows this process schematically. A 1-g finite element model is developed using
physical parameters and updated using open loop data to obtain good accuracy. Ad-
ditional dynamics for sensors, actuators, time delays, etc. are appended to the finite
element model to create an input-output model. Multiple identification experiments
are performed, and the data is fit with even higher accuracy measurement models.
By comparing the measurement models and input-output model, a 1-g uncertainty
model consisting of mean errors and bounds on critical parameters is developed. A

shifted input-output model can be created by shifting the parameters of the input-
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output model by the mean errors. Robust controllers can be designed on the shifted
model, and evaluated using the parameter bounds from the 1-g uncertainty model.

A model of the on-orbit dynamics is created by removing the gravity effects and
suspension degrees of freedom from the 1-g finite element model, and appending the
appropriate additional dynamics. This is termed the 0-g input-output model. A 0-g
uncertainty model is developed by projecting the mean errors and bounds from the
1-g uncertainty model into 0-g. This projection, which is one of the central ideas of
this work, is accomplished using all of the information available, i.e. the 1-g and 0-g
finite element models, and the 1-g uncertainty model. A 0-g shifted input-output
model can then be created in an analogous manner to the 1-g shifted input-output
model. Robust control design in 0-g can then be performed using the shifted input-
output model, and evaluated using the predicted bounds on critical parameters of
the system. In addition to developing accurate models of the on-orbit dynamics for
control design prior to flight (shifted input-output and uncertainty model), modeling
and control confidence have been developed from the ground based test heritage.

The updated finite element model and multiple identifications data sets in 1-g
shown at the top of Figure 1.1 are assumed to be complete at the beginning of this
work. The 0-g finite element model is also available, given the removal of gravity
and suspension degrees of freedom from the 1-g finite element model. The bottom of
Figure 1.1 is the focus of the work in this thesis. The specific issue addressed in this
work is, “Can accurate structural dynamic models and uncertainty models be created
for control analysis and synthesis of structures in space, based solely on modeling and
experimentation on the ground?”

The specific objectives of this thesis are as follows:

e Develop a 1-g uncertainty model based on a finite element model and sets of
open loop identification data.

e Develop analytical techniques using the 1-g and 0-g finite element models and
the 1-g uncertainty model, to accurately predict the 0-g uncertainty model.

e Examine how the shifted model and uncertainty model can be used for control
synthesis and analysis.

e Demonstrate these techniques experimentally.

14
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Figure 1.1: Development of control design and uncertainty models for 0-g.

1.2 Previous Work

Figure 1.1 shows that developing a good control design model and uncertainty model
for 0-g is a complex blending of many disciplines. These include finite element model-
ing and updating, system identification, probability analysis, and finite element error
localization (for the uncertainty projection problem). Finite element modeling and
updating are assumed to be complete, and are therefore not examined here. A sum-
mary of system identification techniques is given, although this is not intended to
be an exhaustive listing, only a summary. The areas which are considered the main
focus of this work, finite element error localization and stochastic analysis of models
and hardware, are thoroughly examined. 7

System identification techniques, the term applied to predicting models from open

loop data, have evolved from both the structural dynamics [1] and control systems [2]
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fields. While there are many algorithms which obtain very accurate fits to the data,
many techniques create difficulties in using them for model updating and error lo-
calization. These difficulties include estimating the frequency, damping, and mode
shape information from a model with repeated modes; estimating normal modes from
measured complex modes; and the inherent coupling between the structural system
and additional dynamics such as time delays, sensor dynamics, and closed loop servo
system. There are a few methods, however, which parameterize the system in a man-
ner such that modal identification is much easier. This includes easy parameterization
of additional dynamics for the actuators and sensors, time delays, etc. A few methods
have been developed, using both frequency domain [3-5] and time domain [6] data to
overcome these problems.

Finite element model error localization techniques have become an area of intense
research over the past 10 years. These techniques attempt to localize errors in the
finite element model to specific degrees of freedom using measured frequencies and
mode shapes from modal analysis, and an initial finite element model. A number of
papers give excellent surveys of work in this area [7-9]. There are a few methods which
localize the errors to specific degrees of freedom, but do not give an indication of how
to update the system [10-12]. The most notable of these is the Coordinate Modal
Assurance Criterion (COMAC) [10], where the errors are localized by examining the
differences in the theoretical and experimental mode shapes at the measured degrees
of freedom. The most complete solutions, however, localize and correct the model
é;;prgz ”T;hgse methods can be divided into four groups: Matrix Methods, Sensitiyii;tyw
Methods, Frequency Domain Methods, Dynamic Reaction Methods.

Matriz Methods work directly with the mass and stiffness matrices in localizing
the errors [13-15]. Sidhu and Ewins [16] developed the most well known of these
called the Error Matrix Method. A system is first reduced to the measured degrees
of freedom using techniques such as Guyan reduction [17]. Errors in the flexibility
matrix are identified, and then inverted to get the measured stiffness errors. Although
this is one of the more practical methods because it attempts to keep the physical

nature of the system, Gysin [18] showed that it is extremely dependent upon the
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choice of reduction technique.

Sensitivity Methods make use of the first order sensitivities of the modal parame-
ters, i.e. the Jacobian. The mass and stiffness matrices are expressed as a function of
design parameters (E, I, p, etc.) The first order sensitivities of the system can then
be considered. Although many variations of this method have been presented [19-22],
most depend on measurement of the mode shape at all degrees of freedom (or the
experimental mode shape is expanded to the full mode shape.) The most well known
variant is due to Lallement et al. [23-26]. In these papers, the problems with the
method are addressed such as sensitivity problems, the choice of design parameters,
the matching of mode shapes, and the use of partial information. Although not used
by many of the researchers in this area, the most appealing aspect of this variant is
that partial measurement of the mode shapes can still be used, without expansion.

Frequency Domain Methods utilize the frequency response functions, instead of
the modal parameters in generating error matrices. These methods build an error
matrix in the frequency domain that is not in the form of a correction to the mass
or stiffness matrices. Many of the techniques are transformations of already known
methods into the frequency domain. Gordis [27] and He [28] both give frequency
domain interpretations of the Error Matrix Method.

Dynamic Reaction Methods localize the‘ﬁnite element model errors by examining
the residues of the eigensystem using the experimental mode shapes and frequencies.
Large residues indicate errors at the degrees of freedom. The experimental mode
shapes are assumed to be known, either by measurement or expansion. Fissette et
al. developed the Force Balance Method [29], where a vector of spatially localized
unbalanced forces is used to find the degrees of freedom in error. By assuming a form
for the model errors, the correction matrices are found.

Many of the finite element model error localization methods presented require
either measurement of all degrees of freedom, reduction/condensation of the original
system, or expansion of the experimental mode shapes to the size of the original
system. In practical applications for space structures, measurement of all degrees of

freedom is not possible. As stated previously, reduction/condensation of the original
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system leads to errors and error locations which are suspect [18]. Expansion of mode
shapes to the original size of the system has been explored by many researchers, but
as with the reduction methods, there is no general correlation between the actual
mode shape and the accuracy of the expanded mode shape [30]. The only method
which is capable of handling partial information, i.e. a subset of the frequencies and
measurement of a subset of the degrees of freedom, is the Sensitivity Method.

Finite element error localization techniques are usually used for updating the
physical parameters of the system, assuming that they have deterministic errors.
Multiple identification data sets, however, give more information than deterministic
errors. The errors are actually stochastic in nature. The mean can be thought of as
the modeling error, and can be used in the updating and localization techniques given
previously. The variance can be thought of as the repeatability of the experiment,
and can be used to develop an uncertainty model for robust control design.

There is little research in the area of repeatability of experiments, especially for
the specific use of control design. Collins et al. [31] assume statistical properties for
the design parameters, in order to iteratively localize the uncertainties. This is very
similar to the Sensitivity Method, except the variances of the design parameters are
chosen to reflect the user’s confidence in the original estimate. Also, in an interesting
series of papers, Hasselman et al. [32-34] group together generically similar structures
into three databases, an example of which is Research Models of Large (truss-type)
Space Structures. The database can then be used to create a probability model of a
space structure, where a mean model can be formed, with a distribution of errors of
the modal parameters. Although quite conservative for specific designs, applicability
of this database to the initial design phase of space structures is very high.

One of the most thorough examinations of the repeatability of ground and space
hardware is the Middeck 0-g Dynamics Experiment (MODE) [35,36]. On the ground
and in space, the variation in modal parameters, specifically frequency and damping,
were examined as functions of disturbance force amplitude, joint preload, reassembly,
shipset (different hardware), and suspension change. Joint preloads in the MODE

experiment introduced weak nonlinearities, while the inclusion of a rotary joint intro-
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duced moderate nonlinearities, especially in the torsion mode. Comparing the modal
parameters of two sets of hardware designed from the same design plans, the overall
trends were the same (i.e. pole-zero patterns), however, there were small uncertainties
in frequency from 0-5%. As the frequencies of the suspension system were increased,
the test article frequencies increased and damping decreased, especially in the lower
modes. The repeatability of the hardware was also tested by using reassembly. The
variance during the tests was approximately 1% in frequency and 1/2% in damping,
although this was quite larger for the configuration that included the moderately
nonlinear rotary joint.

The work in this thesis builds upon the current error localization literature by in-
troducing an additional matrix method and refining the sensitivity method described
previously [31,23,26]. Both methods utilize only measured uncertainties, and do not
reduce the system or expand the measured mode shapes. The two methods are also
extended to include variance uncertainty localization for the development of bounds
in an uncertainty model. It will therefore be refered to as uncertainty localization
throughout this work. In addition, as a result of the extremely large amount of MACE
on-orbit data, a complete examination of the repeatability of a structure in both 1-g

and 0—g environments is also given.

1.3 Thesis Outline

Chapter 2 gives a preliminary discussion of the models and hardware used through-
out this thesis. The Middeck Active Control Experiment (MACE), a shuttle flight
experiment that flew on STS-67 in March 1995, is introduced as the motivation and
experimental validation of the work in this thesis. A detailed description of both the
1-g and 0-g finite element models is given. Next, a thorough assessment of model-
ing uncertainties is presented, primarily focusing on uncertainties between the finite
element model and hardware.

Chapter 3 details the development, of the 1-g, termed Nominal, uncertainty model.

First, a testing summary is presented to capture uncertainties between the model
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and hardware. Next, an identification technique is introduced called the Discrete
Extended Kalman Filter (DEKF). This technique satisfies allows the easy parame-
terization of the finite element model and additional dynamics needed in an identi-
fication/parameter estimation method to accurately identify the modal parameters,
as well as giving additional information in the form of an error covariance matrix.
The development of an uncertainty model based on sets of measurement models and
identified parameters from the DEKF is given, which is in the form of mean errors
and bounds on critical parameters of the system. Finally, the development of the
1-g uncertainty model for MACE is shown both to verify that the DEKF and uncer-
tainty model can be developed for a practical system, and to support the work in the
following chapters.

Chapter 4 develops the methods that tak-e the 1-g and 0-g finite element mod-
els, and the 1-g uncertainty model, and predicts the 0-g uncertainty model. The
idea proposed is to localize both the mean error and variance uncertainties in the
eigenvalues and eigenvectors to specific degrees of freedom, thus forming mass and
stiffness uncertainties. Once localized, a mapping between the 1-g and 0-g systems
can be made. Therefore the mass and stiffness uncertainties of the 0-g system can
be developed. The 0-g uncertainty model can then be predicted by projecting the
mass and stiffness uncertainties into 0—g to get mean error and variance uncertainties
in the 0-g eigenvalues and eigenvectors. The mean error and variance uncertainties
can then be used to form the 0—-g uncertainty model, in the form of mean errors and
bounds on critical parameters of the system.

Experimental verification of the uncertainty localization and projection methods
is given in Chapter 5. Because of the uniqueness of the MACE experiment, there
are multiple data sets of two configurations of the test article in both 1-g and 0-g.
Therefore, two examples are given to validate these techniques using MACE data.

Chapter 6 gives a summary of the usefulness of an uncertainty model for control
design. This applies for a general uncertainty model and control design model, not
just the 1-g and 0-g cases examined in this thesis. An overview of controller synthesis

and analysis methods which benefit from the use of an accurate uncertainty model
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is given. In addition, four cases of how to utilize the mean errors and bounds on
critical parameters of the system are presented, each of which are different in their
conservatism. Finally, two 0-g closed loop controllers from the MACE experiment
are presented. One utilizes the uncertainty model in the most conservative manner,

while the other utilizes the uncertainty model in the least conservative manner.

1.4 Contributions

The significant contributions of this work are given here in order to understand where
they fit with the work presented. In the end, a list of the significant contributions
will again be given.

In Chapter 2, the detailed summary of uncertainties between a finite element
model and hardware is a contribution. Although parts of this summary have been
detailed in other works, this is the most detailed of its kind.

In Chapter 3, the testing process for capturing the finite element model uncer-
tainties in the data is a contribution. This is especially true because it is one of
the first set of tests that recognize that hardware is actually stochastic, rather than
deterministic. Therefore, one of the more significant contributions of this work is
the development of an uncertainty model, which consists of bounds, as well as mean
errors, on critical parameters of the system.

Chapter 4 contains the most significant contributions of this work. There are
many techniques which have been developed for localization of errors in finite element
models. The matrix technique is unique in its development, but is quite limited in its
application because it is not physically based. The sensitivity method has been used
previously to localize errors in finite element model. This work, however, presents
a more structured method than presented previously. In addition, the recognition
and localization of both mean error and variance uncertainties is quite unique in its
application. Finally, most of the error localization methods work only to improve the
finite element model. This work is the first to utilize the methods both for projection

into another environment (0-g), and for control design.
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Chapter 5 is unique in its experimental validation of the methods presented. It is
one of the more thorough examinations of the modeling and testing of structures in
1-g and 0-g, primarily because of the success of the MACE experiment.

And finally Chapter 6 presents four unique cases of how to utilize both the mean
errors and bounds of the uncertainty model for control design using methods devel-
oped previously. In addition, experimental validation of the usefulness of the un-
certainty model is presented in the form of 0-g controllers implemented on MACE

during STS-67.
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Chapter 2

Discussion of Models and

Hardware

In order to obtain better clarity throughout this work, a preliminary discussion of
the hardware and finite element models, along with associated uncertainties is given
first. The Middeck Active Control Experiment (MACE) is introduced as experimental
verification for the techniques presented to assure their practicality. A complete de-
scription of the modeling process is given to summarize the modeling work on MACE
and to motivate the work in this thesis. The hardware and finite element model are
presented in their entirety in order to gain full insight into the uncertainty localization
and projection techniques for a practical system. Finally, a thorough assessment of
finite element model uncertainties is presented which aids in the development of the
uncertainty localization techniques and gives insight into which uncertainties can be
easily localized. In addition, by thoroughly examining modeling uncertainties, a set
of experimental tests can be developed which aid in the observation of each of the

different types of uncertainties.
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2.1 Middeck Active Control Experiment (MACE)

The Middeck Active Control Experiment (MACE), shown in its 1-g configuration in
Figure 2.1, is a shuttle middeck experiment that flew on the Space Shuttle Endeavour
in March 1995 (STS-67). MACE was designed to investigate the various modeling
and control design issues associated with the change in operational environment of
a flexible spacecraft from 1-g to O-g [37]. The primary objective of the MACE
program is develop a well verified set of design techniques that allow designers to
have confidence in the eventual orbital performance of future spacecraft that cannot be
dynamically tested on the ground in a sufficiently realistic O-g simulation. In order to
achieve this objective, a complex mesh of analytical modeling, ground testing, and on-
orbit redesign was implemented which aided in the development of tools to confidently
and accurately predict open loop and closed loop behavior without the benefit of
0-g data (i.e. prior to launch). MACE builds upon the concepts of the Middeck
0-Gravity Dynamics Experiment (MODE), which explored the characterization of
fluid dynamics, space station structure, and crew motion dynamics in 0-g on STS-40,
STS-48, and STS-62 [35, 38].

The specific program objectives were as follows:

e Assess impact of gravity perturbations and associated uncertainties on the ef-
fectiveness and predictability of multivariable robust control.

o Develop a set of Controlled Structures Technology (CST) procedures for model
development, controller synthesis and closed loop evaluation.

e Demonstrate robust control of structural flexibility in the micro-gravity envi-
ronment.

e Augment preprogrammed control with on-orbit system identification and con-
trol redesign.

e Evaluate modeling and control on a test article representative of a particular
mission architecture.

e Develop a reusable dynamics and control laboratory for the shuttle middeck.
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Figure 2.1: MACE Flight Model Test Article

2.1.1 Modeling Process

The primary motivation for the work in this thesis came from challenges developed
during the MACE program. In order to motivate and clearly understand this work,
a detailed description of the modeling process for MACE is given. Note that this is
a specific example of the general process defined in Chapter 1.

In order to satisfy the specific program objectives listed above, the MACE pro-
gram adopted a complex blend of analytical modeling, ground testing, and on-orbit
redesign procedures. Figure 2.2 shows how the MACE program has been designed to
investigate each of these techniques.

A 1-g analytical finite element model (FEM) is developed, and updated using
modal identification (step A) [39] and measured models (step C) [40]. The perfor-
mance of controllers derived from the FEM is used to identify inadequacies in the
model providing information for further model updating (step B) [41]. The perfor-

mance of controllers derived from measurement models is used to determine when
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Figure 2.2: Modeling and Control approach for MACE

FEM refinement is complete (step D). The 1-g finite element model is essentially
updated when the closed loop performance for both measurement and finite element
based controllers are equivalent (steps B and D in Figure 2.2) [42].

In order to develop controllers prior to flight, the FEM must be used to predict
the 0-g dynamics because it is the only model that is physically based. The gravity
and suspension parameters are removed from the updated 1-g FEM to provide a
0-g model (step E). The 0-g FEM is then to be used for design of flight controllers
(step F). In addition, an on-orbit system identification is performed to provide a
0-g measurement based model, which is then be used to design further controllers
(step G). Finally, FEM and measurement based controllers are compared to judge the
cost/benefit of on-orbit redesign of controllers (step H). Summaries of the on-orbit
modeling and control results are given in Refs. 43-45.

The stability and performance of the controllers designed for the ground-based
tests were typically analyzed using open-loop data. As discussed in Ref. 46, this
reduces the control design iteration time because it accurately captures the discrep-
ancies between the model and the test article. However, prior to flight, no data exists

for analyzing the controllers designed in Step F of Figure 2.2. Thus a new approach
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had to be developed that extends the insights gained from the ground tests and pro-
vides a quantitative measure of the possible errors in the 0-g control design model
that can be used to analyze the compensators designed prior to flight. This approach
is the development of the 0-g uncertainty model.

A few of the insights found during the development of the 0-g uncertainty model
are given here. First, extraction of all modal parameters, specifically the frequencies,
damping ratios, and mode shapes, is quite difficult to do if using a general measure-
ment model. Prior to and during the flight, a technique called Frequency domain
Observability Range Space Extraction (FORSE) [40] was used to create an initial
measurement model, and a Nonlinear Logarithmic Least Squares Method (NLLS) [47]
was used to obtain an even better fit to the data. While these techniques created a
very accurate fit tb the data, estimating the frequency and mode shape information
from this model became difficult because of repeated modes, estimating normal modes
from measured complex modes, and the inherent coupling between the structural sys-
tem and additional dynamics such as time delays, sensor dynamics, and the closed
loop servo system. It was for these reasons that only 1-g frequency uncertainties were
used in developing the 0-g uncertainty model for flight. A complete summary of the
uncertainty model used for flight is given in Ref. 48.

It became clear, however, that for the projection technique to be accurate, more
than the 25 frequency uncertainties were needed. Measured mode shapes from all
of the sensors would provide an additional 400 pieces of information which could be
used in the procedure, thus making it far more accurate. The work in this thesis is a
more complete analysis of the development of 0-g uncertainty model given in Ref. 48.
It draws upon the experiences and data from both ground and space based testing of
MACE.

Another piece of modeling insight developed during the MACE program was that
of the best measurement model for control design. During the flight, the finite element
model based controllers essentially performed better than the redesigned controllers
based on the more accurate measurement model [44]. The source of this nonintuitive

result may lie within the structure itself. When three identifications were performed
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at different disturbance amplitude levels, the damping in a few modes was strikingly
different, implying a strong amplitude dependent nonlinearity. The measurement
model reproduced the data so accurately that the nonlinearity may have been fit
also, such that it detrimentally affected the closed loop controllers. For more detailed
explanation of the on-orbit results, refer to Refs. 43-45

A summary of the primary modeling insights developed during the MACE pro-

gram include:

e Development of a 0-g finite element model accurate enough for robust con-
trol design can be accomplished using ground based modeling and testing, and
removal and gravity and suspension effects.

e Predictable closed loop results for controllers designed prior to flight requires
both an accurate 0-g finite element model and an accurate 0-g uncertainty
model.

e Prediction of an accurate 0-g uncertainty model requires measurement of fre-
quency and well as mode shape information.

e Extraction of modal parameters from measurement models is quite difficult
when measurement models are not physically based.

e The best measurement model for control design is both accurate and physically
based.

2.1.2 Hardware Description

The MACE Flight Model (FM) test artircle, illustrated in Figure 2.1 consists of 4
straight polycarbonate tubes assembled into a bus, each separated by aluminum col-
lars. One strut is actually square hollow, with piezoelectrics mounted on each side
to provide bending strain. Two two-axis pointing/scanning payloads are attached at
each end, each with gimbals actuating about the X and Z axes via DC torque motors.
One is primarily used as a disturbance source (secondary payload), while the other
creates the pointing performance metric (primary payload). A reaction wheel assem-
bly at the center node, comprised of three orthogonally mounted DC servo motors
with an inertia wheel mounted on each, is used to provide attitude torques in three

axes.
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The MACE FM also comprises a variety of sensors for identification and closed
loop control. Each gimbal contains laser rotary encoders measuring the relative an-
gular rate of each axis (4 total). A two-axis rate gyro platform measuring the inertial
rate about the X and Z axes is attached inside of the primary payload to provide
a measure of the pointing performance metric. Three single axis rate gyros are also
mounted on the side of the reaction wheel cans, providing collocated inertial rate
measurements in three axes. Each reaction wheel also has a tachometer measuring
the relative speed of each wheel. Each strut is also instrumented with two strain
gauge pairs at its midpoint to provide a measure of the bending strains about the Y
and Z axes.

The Engineering Support Module (ESM) (not shown) houses many of the addi-
tional pieces of equipment which support the test article. These include: the digital
control computer, two channel signal generation, memory storage, disk drive, power
conditioning for the actuators, and signal conditioning for the sensors. The real time
control computer operates at a 500 Hz sampling rate, and can handle compensators
of up to 80 states. The ESM is attached to the MACE FM test article through a
power and data umbilical. In 1-g, the test article is supported by a three point active
pneumatic/electric low frequency suspension system. Also not shown is a Ku-Band
Interface System (KIS) which provided 40 Megabyte uplink and downlink capability
between Mission Control and the Space Shuttle during STS-67. A detailed description
of the MACE hardware is given in Refs. 49,37

2.1.3 STS-67

The MACE experiment flew on the middeck of the United States Space Shuttle En-
deavour during the STS-67 mission on March 2-18, 1995. The primary payload of the
mission was Astro-2, the second dedicated Spacelab mission to conduct astronomical
observations in the ultraviolet spectral regions. The Commander and Pilot of STS-67,
Stephen S. Oswald and William G. Gregory, were in charge of on-orbit operations for

MACE. MACE was originally scheduled for 3 days of on-orbit operations with the
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following timetable:

Day 1: -Identification of test article and downlink of data
-Implementation of 0-g controllers designed prior to flight
-Creation of 0-g measurement model (on ground)

Day 2: -Implementation of pre-programmed controllers designed prior to flight
-Redesign of 0-g controllers based on measurement model (on ground)

Day 3: -Uplink of redesigned 0—g controllers
-Implementation of redesigned 0-g controllers

As a result of STS-67 being extended to a 16 day mission and the unwavering
support of the crew, the MACE team received much more than the originally planned
schedule. MACE operations during the mission included: 14 days of testing in three
different configurations; over 550 protocols (algorithms), both pre-programmed and
redesigned, were implemented for system identification, CST control, and command
input shaping; there were 13 downlinks of data totaling over 500 Megabytes, and 4
uplinks of redesigned protocols; 5.4 Gigabytes of data was collected; and audio and
video downlink of the crew’s observations were used to facilitate redesign.

A breakdown of the CST control protocols that were implemented on-orbit is
given in Table 2.1, where FEM refers to finite element based controllers, and MM
refers to measurement model based controllers. Notice that more than 50% of the
controllers implemented on-orbit were designed prior to flight using the finite element
model and projected uncertainties (i.e. using no flight data). This shows the weighted
importance for the MACE program of the developing accurate control design and

uncertainty models for accurately predicting closed loop results prior to flight.

Type Model | Number | Evaluation

Pre-programmed | FEM 204 Projected Uncertainties
Redesign FEM 44 0-g Data
Redesign MM 132 0-g Data

Table 2.1: Breakdown of control protocols implemented on STS-67.
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2.1.4 Finite Element Model

As stated previously, the topics of finite element modeling and updating are quite
large and complex, and are not the focus of this work. These models are therefore
assumed to be complete at the beginning of this work. The 1-g and 0-g finite element
models are due to Glaese and Miller [50,39]. A summary of the models is given here
to aid in the discussions of the uncertainty localization and projection techniques
presented in the subsequent chapters.

In order to fully understand which degrees of freedom the uncertainties are lo-
calized to in the finite element model, a breakdown of the nodal numbering system
is presented. Table 2.2 gives a summary of the nodes and elements for the model.
Figure 2.3 shows a stick figure of the MACE FM hardware along with the nodal
numbering scheme. Note that the nodal numbering of the model is structured such
that the 0-g model is developed by deleting nodes 81-113 from the 1-g model. For a
more complete description of the finite element models, please refer to Refs. 50, 39.

In addition to the physical modeling of the structure, gravity effects are also
incorporated into the 1-g model. These gravity effects include sag and twist pre-
deformations, and pre-loading of members, pendular effects on articulating appendages,

and suspension cable violin behavior. These effects are included by adjusting the 1-g

Type Element | 1-g Node Number | 0-g Node Number

Aluminum Collar Beam | 1-3,12-14,27-29, 1-3,12-14,27-29,
38-40,49-51 38-40,49-51

Lexan Strut Beam | 4-11,30-37,41-48 4-11,30-37,41-48

Active Strut Beam | 15-26 15-26

Reaction Wheel Rate Gyros | Beam | 52-54 52-54

Primary Gimbal Beam | 55-62 95-62

Secondary Gimbal Beam | 63-70 63-70

Reaction Wheel Assembly Beam | 71-80 71-80

Suspension System Beam |81-113 n/a

Table 2.2: Nodal numbering and eclement descriptions for the MACE FM
finite element model.
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Figure 2.3: MACE FM nodal numbering in the 1-g finite element model.

stiffness matrix using a iterative, nonlinear static, stress stiffening procedure.
Table 2.3 shows the frequencies and proportional damping ratios for the control-
lable/observable modes in the 1-g and 0-g finite element models for the MACE FM.
The damping in the MACE FM was assumed to be both proportional and concen-
trated, however. The proportional damping was identified using accurate measure-
ment models fit to transfer function data. The concentrated damping is the result of
point dampers in each of the gimbals and reaction wheels, and at the end of each of
the suspension cables. In developing an input-output model for MACE, additional
dynamics and gains were added. These included sensor dynamics and notch filters on
the rate gyros, Bessel filters on the strain gauges and tachometers, digital computer
delays, and various conditioning gains on eﬁchpf the actuator and sensor channels.
In addition to the sensor, actuator, and computer modeling, the nominal system

for the MACE test article also includes two servo systems. Three speed servos from
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1-g 0-g
Mode Type f (Hz) ¢ f (Hz) ¢
Torque wheel #1 0.00 1.000 0.00 1.000
Torque wheel #2 0.00 1.000 0.00 1.000
Torque wheel #3 0.00 1.000 0.00 1.000
Suspension - bounce 0.20 0.100 n/a n/a
Suspension - rotary pendulum 0.24 0.091 n/a n/a
Suspension - tilt 0.44 0.034 n/a n/a
Primary X Gimbal 1.19 0.038 0.00 0.00
Primary Z Gimbal 1.23 0.055 0.00 0.00
Secondary X Gimbal 1.26 0.050 0.00 0.00
Secondary Z Gimbal 1.30 0.060 0.00 0.00
Suspension - compound pendulum 1:84 0.066 n/a n/a
1%* Z bending 2.24 0.022 2.27 0.021
1%t Y bending 4.60 0.070 3.73 0.064
Suspension - 1°* X violin 7.13 0.014 n/a n/a
Suspension - 1%* Z violin 7.24 0.006 n/a n/a
2" 7 bending 9.56 0.012 9.53 0.041
2" Y bending 9.80 0.039 9.47 0.029
37 Z bending 11.04 0.037 10.95 0.042
3@ Y bending 11.29 0.039 11.13 0.056
Suspension - 2" Z violin 11.66 | 0.013 n/a n/a
39Y bending 13.14 0.054 13.44 0.067
Suspension - 3™ Z violin 14.68 0.020 n/a n/a
Suspension - 2" X violin 15.12 0.021 n/a n/a
4™ 7 bending 16.19 0.018 16.11 0.018
4" Y bending 17.82 0.009 17.85 0.009
5'" Y bending 2490 | 0.014 | 25.03 | 0.014
5" Z bending 39.41 0.014 39.56 0.014
6" Z bending 48.84 0.019 49.18 0.019
6" Y bending 49.01 0.016 49.67 0.017
7" Y bending 56.16 0.015 56.97 0.016

Table 2.3: Frequency, damping ratio, and description of ecach mode retained
in the finite element model for the MACE FM test article in 1-g
and 0-g. (0-60 Hz range)
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the collocated tachometers to each of the reaction wheels and a DC spin are used
to prevent nonlinear stiction in the wheels from affecting the open and closed loop
experiments. There are also four proportional-integral servos from each encoder to
collocated gimbal. These are used to act as a nominal pointing system, to reduce
the nonlinear stiction effects in the gimbals, and to enable the identification of the
system in 0-g, where the gimbal modes would otherwise be rigid body modes. Note
that the frequencies and damping ratios shown in Table 2.3, especially the gimbal rigid
body modes, are substantially different when the gimbal servo systems are included
in the model. After retaining only those modes which are controllable/observable in
the input-output model, and adding the additional dynamics and damping, the final
input-output model has 256 states, 23 outputs, and 9 inputs.

2.2 Assessment of Modeling Uncertainties

The most difficult aspect of this thesis is localizing the uncertainties, both mean error
and variance, to specific degrees of freedom. If this is accurately accomplished, the
projection techniques such as 1-g to 0-g can be accomplished in a straightforward
manner. The first step in this process is to define all the possible modeling uncer-
tainties, and how they manifest themselves into the model. (Note that this may be
difficult in some cases.) A complete description of all uncertainties also provides the
theoretical groundwork for the uncertainty localization process. All uncertainties can
be divided into the general groups of Linear and Nonlinear. Within these general
groups, 5 sub-groups can be defined which describe the types of uncertainties be-
tween the hardware and structural model of a general system. These will be called:

Physical, Modeling, Coupling, Testing, and Nonlinearities.

2.2.1 Physical Uncertainties

Physical uncertainties are those where the physics of the system has been captured,
but the parameters have incorrect values. These uncertainties, which are traditionally

treated with updating techniques, can be divided into two smaller groups: Material
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Figure 2.4: Sample beam element and reference axes and notation.

uncertainties such as the modulus of elasticity, density, and Poission’s ratio; and
Geometric uncertainties such as area and inertia (or their primitives such as radius,
width, etc.), and length. These are also the easiest to be updated using uncertainty
localization techniques. ’

To demonstrate the physical uncertainties which may lie inside a specific finite
element, a beam element is broken down into its simplest form. Figure 2.4 shows the

reference axes and notation used for this beam element. The element has 12 degrees

of freedom, being 3 displacements and 3 slopes at each end of the element, or
T
u—_—[u;‘ o WP UGB} (2.1)

The stiffness and mass matrices for this element can be written in block form

k= kaa kas
L kZB kBB

m = Maa Map (2‘2)
| Miy Mas

In order to simplify the examination of the possible uncertainties within these

elemental matrices, only the sub-matrices k., and m,, are examined, with the other
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sub-matrices matrices understood to be simple extensions. Assuming a tubular, sym-

metric cross-section, the 6 x 6 sub-matrices are given by

eak 0 0 0 0 0
13pAL 11pAL?
35 0 0 0 210
13pAL 0 —11pAL? 0
35 210
Maa =
o0 o
symmetric %Iga 0
pAL3
L 10 J
£4 0 0 0 0 0
9 0 0 F
12E1 0 —6EI
L3 L?
kaa = (2.3)
3EJ O O
5(14+v)L
symmetric 0 % 0
4ET
| L
where the area and inertias for a tube can be further written as
I = nrit
J = 27rdt
A = 2mrt (2.4)

where r is the radius and ¢ is the thickness.

Table 2.4 shows a summary of the mass and stiffness change matrices (in % change
of entry), for changes in the material and geometric properties. There are a few items
to notice. First, the change in modulus of elasticity (E) and change in density (p) only
affect the stiffness and mass matrices respectively. Also, a change in the thickness (¢)
is the same as a change in the modulus of elasticity (E) and density (p). As a result,
the uncertainty localization techniques and finite element model updating techniques
cannot distinguish between these two. The change in radius (r) is similar to the
change in the thickness (t) (and combination of changes in modulus of elasticity (E)

and density (p)), except for the extensional and torsional degrees of freedom. As with
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0 0] 1 1 1 1 0 0
1 1 1 1 0 0
Amy,= 0 0 0 , Akaa= 1 Amaa= 1 , Dkaa= 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 0
(a) AE =1% (b) Ap=1%
1 1 1 1
1 1 3 3 1 1 1 1
1 1 3 3 1 1 1 1
Amaa= 3 , Dkaa= 3 Amy, = 1 y Bkaa= 1
1 1 3 3 1 1 1 1
1 1 3 3 1 1 1 1
(c) Ar =1% (d) At = 1%
1 1 0 0
1 2 3 2 0 0 0 0
1 2 3 2 0 0 0 0
Amua= 1 y Dkaa=- 1 Amy,= 0 yAkaa= —v
140
2 3 2 1 0 0 0 0
2 3 2 1 0 0 0 0
(e) AL = 1% (f) Av = 1%

Table 2.4: Breakdown of mass and stiffness element change matrices for
changes in physical parameters for a tubular beam element.

the case of change in the thickness (¢), if these degrees of freedom are not measured,
it is quite difficult to distinguish the difference between them. The change in length
(L) is quite independent from the others, and affects both the mass and stiffness
matrices. And the change in Poisson’s ratio (v) affects only the torsional degree
of freedom in the stiffness matrix. If this degree of freedom is not measured, the
effects of this change are minimal. Insights such as the relative importance of these
change matrices and which of them can be observed are a very important basis for
the uncertainty localization techniques. Note that similar analyses can be made for

any cross-section and any type of finite element.

2.2.2 Modeling Uncertainties

Modeling uncertainties are those errors in which the physics of the hardware has

not been represented correctly. These can include discretization issues, selection of
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correct element types, or unmodeled boundary conditions. Most of the uncertainties
in this group can be avoided with thorough and correct modeling of the given system.
Discretization errors can usually be avoided by using a fine mesh of elements in
the model. If further mesh refinement does not reveal differences in the frequency
range of interest, there is usually no discretization errors. In a few cases, such as when
a piezoceramic is attached to the top of a more flexible member, a discontinuity can
occur in the strain, such that an extremely fine mesh is needed. Many times, however,
these problems can be avoided by additional corrections. An example of this is incor-
porating a static gain into the input-output model of the system in order to overcome
inaccurate modeling of the discontinuous strain at the edge of a piezoceramic [51].
The choices of element types are very irr_lportant in representing the dynamics
of the structure. If an incorrect element type is used, such as using a beam element
when a shell element is more appropriate, or the boundary conditions are mismodeled,
the physics of the model has not been captured correctly. Therefore, any localized
adjustment is not physically correct, and cannot be used as a basis for updating or

projection.

2.2.3 Coupling Uncertainties

There are many different types of systems that couple with the dynamics of the
finite element model, only a few of which are explained here. Note that physics
of the couplings are assumed to be modeled correctly, but the parameters of which
may need adjustment. The couplings that are described in this work are divided into
two groups: Internal and External Couplings. Internal Couplings are those additional
components of the system which need modeling, but are not necessarily modeled with
finite elements. These include boundary conditions, joints and attachments, actuator
and sensor dynamics, time delays, various gains, etc. These components must be
modeled and then appended to the finite element model. By doing this, these models
can be parameterized in the identification technique in order to develop uncertainties

attributed to components themselves. Therefore, if they are parameterized in the
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model, the uncertainty localization can be accomplished, even though they have not
been included in the finite element model.

External Couplings are those which are applied externally, or due external sys-
tems. Three very important External Couplings are aerodynamic, gravity, and control
systems. The modeling of the coupling between an aerodynamic model and a finite
element model is a very difficult process to undertake [52]. In addition to uncertain-
ties in the finite element model, even larger uncertainties exist in the homogeneous
disturbance and aerodynamic effects. Localization for this type of system would be
a great challenge.

The coupling of a control system with a model may or may not have a large
impact on the uncertainty localization procedure. The closed loop system can usu-
ally be parameterized in the identification process, which makes it similar to that of
adding actuator or sensor dynamics. However, care must be taken in understanding
the impacts of the control system on the other uncertainties. For instance, a high
bandwidth compensator may control the closed loop system so well that the sensor
signals are much smaller than they would be in open loop. This increases the sus-
ceptibility of the system to uncertainties such as sensor noise and nonlinearities. For
MACE, the servo systems around each gimbal and reaction wheel actually benefit
the uncertainty localization process by reducing the nonlinear stiction effects in the
gimbals and reaction wheels. The control system, however, must be parameterized
in the identification process. An even more complicated system is one which couples
both aerodynamic and control system effects with the finite element model [53].

Wada [54] states that the modeling of the gravity (and suspension) effects rep-
resent a major obstacle to the testing of space structures, rather than a minor in-
convenience. The coupling of gravity into a system has many different effects such
as geometric stiffening of members, initial deformation, and effects on actuators and
sensors. Because the focus of this work is on projection of uncertainties from 1-g into
0-g, a more detailed explanation of gravity coupling is given here. This summary is
due to Rey [55, 56], where an excellent overview of the previous work and thorough

examination of the modeling of these gravity effects is presented.
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Figure 2.5: Nodal and distributed loads on a beam element in gravity.

The development of an adjustment to the elemental stiffness matrix due to gravity
requires stress evaluation and integration of the nonlinear strain-displacement rela-
tions. Finite element modeling software usually does this using an iterative method
to create the internal stress description. Rey [56] developed an elemental stiffness
adjustment due to gravity stiffening by assuming nodal and distributed loads. Fig-
ure 2.5 shows a beam element with a distributed gravitational load acting over the
element, and nodal forces and moments acting at each end. The nodal forces and
moments are due to nodal masses and inertias coupling with gravity in the element.

The adjustment to the 1-6 portion of stiffness matrix can then be written as

—{pALg)c

b (MALMB)eg —(M'+MP)co 0 .
L? L2 3
3(2FB _pALg)sh 0 IO(QMJ‘—pALZg)CG CrMB FBog
5L 10L 6L —z
MZAco
kgan= ka2 5 ~kze ks
EAAT (2FB—pALg)Js8  (MA+MB)c§ —(10MA+10ME—7pAL%g)co
2AL 6 60
symmetric g4Ff—3§:Lg2Lso 0
ks.s

(2.5)
where c# is cos 8, sf is sin §, and @ is the the angle between the horizontal and the
long axial of the beam, as shown in Figure 2.5.

In comparing the original stiffness matrix in Equation 2.3 with that of the gravity

adjustment stiffness matrix of Equation 2.5, there are a few couplings which to ob-
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serve. An axial load (F},) stiffens or de-stiffens all degrees of freedom except the axial,
while also coupling the bending and axial degrees of freedom. A bending moment
(M,, M,) couples the axial and torsion degrees of freedom with the bending degree
of freedom, while a torsional moment couples the out of plane bending degrees of
freedom. The distributed loading, which is closest to a gravity loading, stiffens or
de-stiffens all bending and torsion degrees of freedom, while also coupling axial and
torsional degrees of freedom with the out of plane bending degree of freedom.
Another gravity effect is that of initial deformation in the form of sag (droop) or
twist of the system. Initial deformation of a system can be written as a transformation

between the nominal and deformed system, or
Kaes = TTkT (2.6)

Again examining the 1-6 portion of the system, the transformation matrices for sag

and twist are

c 0 —s0
01 0 0
s 0 cf
TsagAA = , (2.7)
. ¢ 0 —sb
0 01 O
I s6@ 0 cb J
1 0 0
0 cf sb 0
0 —s@ cf
ﬂwiAA = (2-8)
1 0 0
0 0 cf sO
0 —sf b

where s and cf are sin § and cos @ respectively.
The drooping of a system as in Equation 2.7 has the effects of coupling the axial

and vertical bending degrees of freedom, and coupling the torsion and bending degrees
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of freedom. An initial twist about the neutral axis of the system, given in Equation 2.8

essentially couples the out of plane bending degrees of freedom.

2.2.4 Testing Uncertainties

Depending upon the type of testing, many uncertainties can also enter during the
tests. Issues such as noise, bias, and bandwidth in sensors and time delays in com-
puters can all can impede accurate measurements of the system. Strain gauges are one
example of a sensor which is also very dependent on the attachment to the system.
Also, unknown disturbances such as aerodynamics can lead to many uncertainties
in the model. Additional testing uncertainties can arise when using shakers and ac-
celerometers for modal analysis. The addition of these sensors and actuators should
be modeled and parameterized in the identification process. Using actuators and sen-
sors of good quality, and modeling all actuators, sensors and time delays thoroughly

is the simplest step in avoiding these many types of uncertainties.

2.2.5 Nonlinearities

Nonlinearities in some form act on every system, and usually only hinder the un-
certainty localization process. One of the primary objectives of using variance un-
certainties in addition to mean uncertainties is to enable the localization of weak
nonlinearities. Strong nonlinearities only degrade the uncertainty localization pro-
cess, and usually require a nonlinear model, in addition to the finite element model.

Nonlinearities in a system can include material nonlinearities, stiction, dead band
stiffness in joints, and changing boundary conditions such as loss of tension in a
cabled suspension system. There are four manners in which to treat nonlinearities in
a system: ignore them; use uncertainty localization techniques if they are weak; add
additional components which downgrade a strong nonlinearity to a weak one, such as
using a servo controller or DC bias; add a nonlinear model to the system. The work

in this thesis attempts to address the second option.
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Capturable

Group Sub-group Type Easy | Difficult
Linear Physical Parameters | Material Vv
Geometric Vv
Modeling Discretization Vv
Incorrect Element Physics Vv
Internal Coupling Boundary Conditions

Joints/Attachments
Actuator/Sensor Dynamics
Time Delays

External Coupling | Aerodynamic
Gravity
Control System

Testing Sensor/Process Noise
Sensor Bias

v

Nonlinear | Weak
Strong V4

Table 2.5: Table of uncertainties between structural hardware and models,
along with the ability to capture them using identification and/or
localization methods.

AU A A N N
<

2.2.6 Summary

Table 2.5 gives a summary of the uncertainties that may exist between a structural
model and set of hardware. In addition, the capturability, or ability of the tests and
methods in this work to develop a physical mean or variance uncertainty which is the
source of the uncertainty, is given as either easy or difficult. Physical uncertainties, for
instance, are usually easy to localize. This is intuitively correct because of the wide use
of model updating techniques available for these parameters. Modeling uncertainties,
however, are far more difficult to capture with these techniques, primarily because
the dynamics have not been captured correctly. For instance, if the wrong type of
discretization is used, it will be difficult to localize these to uncertainties to correct
physical degrees of freedom.

Internal couplings such as such as boundary conditions and actuator/sensor dy-

namics and joints and attachments can be localized by using the identification algo-
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rithm, rather than a finite element error localization technique. However, this can only
be done if they are modeled and appended to the finite element model. Uncertainties
in these dynamics can then be localized by parameterizing them in the identification
process. External couplings complicate the system quite easily. Therefore, they must
be examined case by case. Gravity couplings, for instance, are usually captured in
the finite element model by an adjustment to the stiffness matrix. Therefore, they
lend themselves to uncertainty localization.

It is difficult to know if testing uncertainties and nonlinearities can be represented
with a physical uncertainty. It is assumed that the noise uncertainties, because they
are small, will manifest themselves as larger variance uncertainties. Random bias
errors that are large, however, cannot be represented as a linear physical change to
the system. Many of these uncertainties can- be avoided by using quality actuators
and sensors, modeling them correctly.

Nonlinearities, however, can have the most detrimental effects on the localization
process, especially if they are strong. If they are weak, or can be made weak by
the addition of another component to the system such as a controller, these types
of nonlinearities are assumed to be identified using variance uncertainties. If the
nonlinearities are strong, a nonlinear model must be included.

In order to successfully identify and localize uncertainties, steps must be taken to

reduce the effects of those uncertainties which are not capturable. These include:

e Refining the finite element mesh to prevent discretization and joint and/or
attachment errors.

e Understanding the physics of the hardware such that the correct element types
are used.

e Completely modeling boundary conditions and actuator and sensor dynamics.

e Completely understanding all coupling effects, and their impact on the finite
element model.

R 37Com§1e't'é;lfyi'iiinﬂd’érétanding all nonlinear effects, including modeling all moder-
ately nonlinear effects.

Once these precautions have been taken, the uncertainty localization process has the

best chance of capturing the most accurate mass and stiffness uncertaintics.
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Chapter 3

Identification of Nominal

Uncertainty Model

In the previous chapter, a complete description was given of uncertainties that may
exist between a finite element model a set of hardware. With these identified, the next
step is to create and implement a set of tests which will allow the measurement of all
uncertainties. This chapter gives a complete set of tests for hardware such that the
uncertainties in Table 2.5 are observable and can be localized. A description is then
given of the Discrete Extended Kalman Filter, the recursive identification/parameter
estimation algorithm used to identify the modal parameters for each test. Once the
identifications are complete for all tests, the estimated parameters can be used for
creating accurate control design and uncertainty models for the 1-g system, termed
“Nominal”, and/or projection into 0-g, termed “Modified,” for control design (Chap-
ter 4). Finally, each of these techniques including testing, identification and estima-
tion of parameters, and creation of control design and uncertainty models in 1-g, are

demonstrated for the MACE experiment,
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3.1 Testing for Uncertainty Identification

Once the uncertainties between the finite element model and hardware have been
evaluated, and the precautions have been taken to reduce those uncertainties that
do not lend themselves for localization, the next step is to develop a set of tests
which best observes all other possible uncertainties. These tests vary all parameters
which may lead to either mean error or variance uncertainties between the model and
hardware. Table 3.1 gives a summary of all test parameters that could be varied.
Those tests that aid in the development of an uncertainty model by observing mean
error and variance uncertainties of the nominal model described in Table 2.5 are
denoted “Uncertainty.” Those tests which require a change to the system, such that
there is a fundamental change to the finite element model, are termed “Update.”
The simplest and easiest uncertainty test is using a different actuator for the dis-
turbance. Observing sensors using different disturbance source locations on a struc-
ture increases the number of parameters being identified and observes both physical
modeling uncertainties and the linearity of the structure. Other uncertainty tests in-
clude disassembly/reassembly, allowing long periods of time between tests, and chang-
ing disturbance levels. Disassembly/ reassembly changes the loading in the joints and
members a possible source of weak nonlinearities. Nonlinearities can also usually be
detected by changing the disturbance level. This is especially true in cases of non-
linear damping. Also, by allowing longerr time between tests, small changes in the
structure can be detected such as plastic rather than elastic sag in a flexible member.
Other tests Wthh are usually used for updatlng smaller portions of the finite
element model are boundary condition changes and deterministic changes such as
adding a known mass (or stiffness) to the structure. Wada et al. developed the most
well-know of these called the Multiple Boundary Condition (MBC) tests [54], where
the structure and gravity effects are modeled and updated by changing the bound-
ary conditions, remodeling, retesting, and updating. These tests are excellent for
model updating, but need to be adapted for uncertainty localization and projection

as described in this work. Because there is usually a fundamental change to the
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Use of Test
Test Parameters Uncertainty ] Update

Actuators
Disassembly/Reassembly
Time between tests

L

Disturbance Levels

Boundary Conditions Vv
Structural Change (i.e. add mass) v
Non-Structural Change (i.e. closed loop) Vv

Table 3.1: Set of test parameters and whether they are primarily used for
the development of an uncertainty model, or finite element model
updating.

nominal finite element model for these tests, the frequency and mode shape infor-
mation cannot be included in the nominal uncertainty model, which is based on the
nominal finite element model. This information can only be added into the uncer-
tainty model-localization-projection process at the localization level as uncertainties
in specific portions of the model.

A final uncertainty test is termed system change and can also be used to develop
the nominal uncertainty model. An example of this type of test parameter is the
addition of a control system to the hardware. Care must be taken, however, in using
a control system because of its effects on other uncertainties. The addition of a control
system may increase effects such as nonlinearities, which would degrade the accuracy
of the uncertainty model.

If the necessary precautions are taken in modeling of a system such as mesh re-
finement and modeling of actuators and sensors, and a complete set of tests such as
those in Table 3.1 are run to thoroughly observe all uncertainties, the uncertainty
localization procedure has the best possible chances of accurately predicting the com-
plete uncertainty model. The next step is to identify the modal parameters from each

of the tests.
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3.2 Discrete Extended Kalman Filter

There are many identification techniques which can be used to fit mathematical mod-
els to test data. Because of the special nature of this work, a technique is needed
which enables the easy extraction of accurate modal parameters such as frequencies
and normal modes from measurement models, and an easy parameterization such that
a finite element model can be combined with actuator and sensor dynamics, time de-
lays, and closed loop dynamics. The technique proposed in this work to identify the
system is the Discrete Extended Kalman Filter (DEKF) [57]. The DEKF satisfies
each of these requirements and in addition, the DEKF gives additional information
on the estimation of the modal parameters in the form of a measurement error from
the covariance matrix. Drawbacks to this technique include the use of an initial pa-
rameterized model and covariance, and convergence and bias problems. Each of these

drawbacks are addressed in this chapter.

3.2.1 Finite Element Based DEKF

The DEKF is essentially a nonlinear filter which is linearized and updated to a stan-
dard Kalman Filter at each time step. Karlov et al. [6] developed the continuous time
version of the Extended Kalman Filter and applied it to a lightly damped structure
for identification and parameter estimation in control design. Because identification
of a system is usually discrete in nature, and higher order filters are an easy and
natural extension, the Discrete Extended Kalman Filter (DEKF) is developed here.
It is assumed that a finite element model has been developed for the system of

the form

Mi+Cn+ Kn = Byu
y = C+v (3.1)
where M,C, and K are the mass, damping, and stiffness matrices respectively, 5

is a vector of n physical degrees of freedom, u and y are the inputs and outputs

of the system, v is the sensor noise, and B, and C, are input and output pickoff
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matrices. Note that the outputs are assumed to be displacements, although rates and
accelerations are simple extensions. Using any commercially available finite element

software, the undamped, no noise, free vibration case is solved as
M®A+KP =0 (3.2)

where A, and ® are the m eigenvalues and eigenvectors of the system (usually m < n).

The eigenvectors are usually mass normalized such that

PTMP® =1
TK® = A (3.3)

Using a change of basis 7 = ®¢ and Equation 3.3, and premultiplying by &7,
Equation 3.1 yields

G+ ®TCPG+ Aq = ®TB,u
y=Cy®Pg+v (3.4)
Assuming proportional damping, the system becomes
§+220¢+ Q% = ®TBu
y = C,®q+v (3.5)

where

Z = diag {G)

Q= diag{\/)T,-}

are the frequencies and damping ratios of the system. Rewriting Equation 3.5 (in the

traditional 2" order form) in 1 order or state space form

q 0 I q 0
= + u
i —2 —2za | | ¢ o7B,
- q |
v=| & o Sk (3.6)
} q
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In proceeding further with the derivation of the DEKF, a few notational simplifi-
cations are used without loss of generality. First, because the system in Equation 3.6
is decoupled into modes, a single mode is used. It is also assumed that the input
and output matrices, B, and C,, use only one degree of freedom. And finally, a
single input and single output are used. Additional modes, linear combinations of
modes within the input and/or output matrices, and additional inputs and outputs

are assumed to be simple extensions. Therefore, the system becomes
ii = Airi + bijuj
Yk = CkiTi + Uk (3.7)

where the i** mode, j* input, and k** output are used and

0 1

A; =
—wf —2§iw,-
0
b,‘j -
| Pjibu;

Cri = [ CykPri O ]

qi

T

K
Note that b,; and cy, are constants.

It is also assumed that the input enters as a zero order hold process in the iden-
tification experiment. The continuous time system in Equation 3.7 can be converted

to discrete time using the matrix exponential [58].

Adi — eA,-d:
This assumes there is no delay between the sensor measurement and control input
except for the 1/2 cycle from the zero order hold. Additional delays can be easily
added to the system, see Ref. 58. The output equation does not change.

In a general system with multiple modes, inputs, and outputs, and sensor/actuator

dynamics and time delays, there are many different parameters that can be estimated.
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For the uncertainty model (and subsequent uncertainty localization and projection
problems), the parameters of concern are the frequencies, damping ratios, and normal
modes. A more general system is addressed in the next section. Therefore, the

parameters of the system that are updated are defined as
T
0= [wi G Pji Dk ] (3.9)
If a state vector at time ¢ is defined as

(= | =0 (3.10)

o(t)

the DEKF equations are

2(t+1]t) = Agq(t); + bai; ()u;(t)
Zt+1)t+1) = 2(t+1)t) + K(t+1)v(t+1)
v(t+1) = y(t+1) — C(t+1)2(t+1]¢)
P(t+1|t) = AQ)P(t|)A(t)T
P,(t+1]t) = C(t+1)P(t+1]t)C(t+1)T + Z,,
P(t+1jt+1) = P(t+1)t) — K(t+1)C(t+1)P(t+1]t)
) =

K(t+1) = PE+1|t)C(t+1)TP,(t+1]t)! (3.11)

where

Agi(t) = Aa

,8=0(t[t)

bai; (t) = baijlo_gq

Cki(t + 1) = Cg;

|8=0(t+1|t)

]
A(t) _ Adi(t) a8 (Adil'i + bdijuj (t)) Ia:a(m),ziqi(zu)

0 I
_ 8
and  C+1) = cult+1) 2 (s lomseonmmneriiy |
The parameters are assumed to be constant over the time of the identification, and

the system contains no process noise. Notice that although the algorithm is discrete

51



in nature, the parameters that are updated are from the physical continuous model.
These parameters can then be used for model updating, development of an uncertainty

model, and/or control design.

3.2.2 Additional Dynamics

The derivation of the DEKF in Section 3.2.1 uses a single mode, and single input and
output. Multiple modes, inputs, and outputs are assumed to be simple extensions.
For more practical systems, however, additional dynamics should be included in the
system such as actuator and sensor dynamics, time delays, and even closed loop
dynamics. Dropping the (-);’s from the nominal finite element model in Equation 3.7,

and discretizing using a zero order hold,

T = Aqr + byu

y=cr+v (3.12)

Dynamics on the inputs and outputs are easily appended to the finite element model.

T Ad deO 0 T bd 0
u
Ci?i - 0 Ai 0 I; + 0 bi
Uj
To boe 0 A, To 0 0
[y [coo ’ ]
C v
yo 0 0 CO ’UO
L d L T, J

where (-); and (), refer to the dynamics on the inputs and outputs respectively.
The DEKF can now be developed in an analogous manner to that in Equations 3.9-
3.11 using this new parameterization. In addition, parameters of the dynamics on the
inputs and outputs can easily be added to the DEKF by adding them to the parameter
vector in Equation 3.9 and taking the appropriate derivatives in the derivation.

A closed loop system can also be casily added to the parameterization. If a
dynamic compensator is used, it can be appended to the system in an analogous

manner to the output dynamics in Equation 3.13. Then the system is closed to
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create a new parameterization. For example, if constant output feedback is used, the

system becomes

I = (Ad — de)CE + bdu

y=cr+v (3.14)

The DEKF can the be developed analogous to that in Equations 3.9-3.11.

3.2.3 Initialization

Although the DEKF has the advantage of having a parameterization that is flexible
enough to include the dynamics of components such as the finite element model and
actuator and sensor dynamics, this is also a disadvantage. The initial model must
be a fairly accurate representation of the data. If the DEKF is used to identify a
single model, any initial parameterized model can be used. If it is used for multiple
identifications, however, for combination into an uncertainty model, the same model
and parameterization must be used for each identification. The model and DEKF
which present the easiest, most intuitive results is the finite element model derivation
presented in the previous section. :

In addition, the initial covariance matrix and noise must be chosen. Initialization
of the covariance and noise intensity matrices must be done using insight of the
user. For the technique presented that uses no process noise, the quality of the final
parameter estimates is rarely dependent upon the initialization of these matrices.
When the DEKF actually has process noise, however, the final parameter estimates
are biased [59]. A few precautions can be taken prior to using the DEKF to prevent
convergence and bias problems. These are:

e A good initial model, i.e. frequency errors less than 10%, damping errors less
than 50%, and mode shape errors less than 50%.

e Initialize the covariance matrix with 3¢ error values less than the actual errors,
i.e. frequency 3o of 10%, damping 3¢ of 50%, and mode shape 3o of 50%.

e Initialize the noise intensity to approximate physical values, and vary if conver-
gence rate is too fast/slow.
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3.2.4 Convergence

An excellent treatment of the convergence and bias properties of the DEKF is given
in Ref. 59. The convergence of the general DEKF algorithm is not guaranteed. How-
ever, the case presented in the this work contains no process noise, even though there
is a deterministic input, and is therefore quite general for identification purposes and
guarantees can be made on convergence. Ljung [60] analyzes the properties of recur-
sive stochastic algorithms including the Discrete Extended Kalman Filter [59]. This
is done by examining the stability properties of an associated differential equation.
For the DEKF, Equation 3.11 is examined assuming the parameters § = constant.
For the case of no process noise, termed a “deterministic model” case by Ljung [59],
convergence of the filter is guaranteed if it is equipped with a projection facility to
keep 6(t), in a compact subset of {#]|A4;(t) stable}. For an open loop system, this
is easily accomplished by bounding the allowable parameter space to be finite, and
keeping Ag;(t) stable by bounding the frequency and damping ratio parameters. For
a closed loop system, this is more difficult, and care must be taken in implementing
the projection facility. If these requirements are met, the estimate converges with

probability 1 to a stationary point of the function
V(0) = E [v(t) ;) v(t)] (3.15)

Although Equation 3.15 has only local minima for stationary points, the estimate can

be proven to be a global minimum if there exists an estimate ¢y such that
Cki(ao)(ZI - Adi(GO));lbdij(go) = Co(ZI — Ao)—lbo (316)

where g, Ag, and by represent the “true” system. Equation 3.16 can be represented in
another way by stating that the innovations v(t) are unbiased, which is addressed in
the next section. Although Equation 3.15 is not necessarily the objective of a Kalman
Filter, minimizing this performance objective is a good relative measure of the ability

of the estimation algorithm.
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3.2.5 Bias

In addition to there being no convergence guarantees for the DEKF, there are also no
bias guarantees [59]. For the general DEKF, if the noise intensities are incorrect, the
estimates are always biased. Unfortunately, there are no simplifying solutions for the
deterministic model case for bias as there is for convergence. The estimates for the
DEKF are said to be unbiased if the innovations are both unbiased and white. The
following tests for these properties are taken from Refs. 61,62. To rigorously prove
that the innovations are unbiased, a x? test on the normalized innovations squared
is used. To prove that the innovations are white, that is, uncorrelated in time, the
autocorrelation function of the innovation sequence is calculated.

There are two tests given in Refs. 61, 62, however, which are much easier to
calculate and give a qualitative but not rigorous test for unbiasedness of the estimates.
First, the noise intensity of the filter is checked by examining the innovations sequence.
If 95% of the innovations lie within the 20-gate, then the noise intensities are set to
acceptable levels. Then, the bias of the innovations will qualitatively tell whether
the DEKF is biased. The DEKEF is therefore said to be unbiased if the mean of the

innovations v, is less than the 20-gate, or if E'[v] < 0.02 - [20,].

3.2.6 Uniqueness

Even if the algorithm is guaranteed to converge and be unbiased, the uniqueness
of the solution is not necessarily guaranteed. An example of this can be seen by
examining the original system in Equation 3.7. Equation 3.16 can be satisfied for
this system for an infinite number of solutions because the ¢i; and ¢x; matrices can
be scaled arbitrarily. If, however, one sensor and one actuator are collocated such
that ¢;; = ¢y, for the i** mode, j** input, and k** output, then the estimate is a
global, unique minimum of Equation 3.16 and the estimate is unique. This is quite
important when attempting to solve for the normal modes of multiple identifications,

and then combining the information into an uncertainty model.
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3.3 Uncertainty Model

After performing the numerous tests on the hardware by varying the test parameters
given in Table 3.1, and utilizing the DEKF algorithm to identify the modal parameters
of the system, the next step is to combine this information into an uncertainty model.
Note that this process is dependent upon the solution to the DEKF being unbiased
and unique.

A stochastic uncertainty model is created by finding the statistics of the modal
parameters, i.e. the eigenvalues and eigenvectors of the finite element model given
in Equation 3.2, and the damping matrix given in Equation 3.5. Once the statistics
of these parameters have been calculated, an accurate control design model can be
created by shifting the original finite element model by the mean parameter uncer-
tainties. In addition, the variances in the uncertainty model are used to create bounds
on critical parameters for robust control design. This process is shown in Figure 1.1.

The DEKF provides additional information in the parameter estimation algorithm
than just the estimates, in the form of a covariance matrix. In the Kalman Filter,
this matrix is the on-line measurement error for the states. In the general DEKF with
process noise on the parameters, the covariance matrix is directly related to the noise
intensity given, and therefore, may be biased. In the deterministic case presented
here, the covariance matrix tends to a steady state of 0 as the estimator proceeds in
time, even if the estimates are biased. Therefore, the statement that the error matrix
gives the absolute measurement error for the estimates is not correct. There is still
good relative information in the error matrix, however. The measurement errors for
each of the parameters act as confidence factors in developing the uncertainty model.
For instance, the variance of parameters that are difficult to estimate tend to 0 at
a slower rate than those that are not. Therefore, a measurement error that is large
implies that the parameter is difficult to estimate, and therefore should be weighted
less when creating the uncertainty model. |

Defining the uncertainty Af; as the difference between the estimate 6; from the
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4% DEKF measurement model, and the initial parameter 6.
Af; =6 — 6 (3.17)

The measured expected value and covariance of the errors can then be calculated.

E[A0) = W i[aoﬂwj (3.18)
Cov [Af] = 7S (a6 - E [a6]) WP [a0, - E [Ao]] (3.19)
W; = diag {1/0;:}
W= W,

where ¢j; represents the standard deviation of the measurement error from the DEKF
for the j* estimate of the :** parameter, and T is the total number of parameter
estimates. From the expected value and covariance, the mean error, denoted Af and

bound, denoted Ad can be readily derived

Af = E [Af] (3.20)
Ab = 3 +/diag {Cov [A6]} (3.21)

The bound is assumed to be three times the measured standard deviation of the
parameter. Assuming a normal distribution and the individual weights are W; = I,
a 99.5% confidence interval results for each parameter. Note that this number may
change depending on the function of the uncertainty model (i.e. what are the effects of
an unstable control system.) When using the stochastic uncertainties for projection,

the mean and entire covariance matrix are used.

3.4 MACE Results

The Middeck Active Control Experiment (MACE) is used to show this process of
creating an uncertainty model for the multiple uses of creating an accurate model for

control design, robust control design, model updating, and uncertainty localization
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and projection. First, an examination of the hardware is made for likely uncertainties,
and a set of tests are designed to observe these uncertainties. Then an example of the
DEKF implemented on 1-g test data is given to show the practicality of this technique.
Finally, the uncertainty model is developed from the multiple tests performed on

MACE.

3.4.1 Testing

The first step in creating an uncertainty model is an evaluation of the uncertainties
of the system, and the development of a test plan. In Section 2.2.6 a checklist was
presented to prevent those uncertainties which are difficult to localize from occurring
in the system. These include: refining the finite element mesh, using the correct
element types, and modeling of actuators, sensors, etc, and incorporation of coupling
effects such as gravity. For MACE, these have been done, and are summarized in
Ref. 39.

There could be many nonlinear effects, but the largest are likely due to the stiction
of the gimbals and reaction wheels (assuming the rotations of the gimbals are small.)
The large effects of these are relieved by the addition of servo controllers at the
gimbals, and speed servos and a DC bias for each reaction wheel. It is assumed that
these fixes have left the hardware with only weak nonlinearities.

Table 3.1 gives a summary of test parameters that can be varied in order to ob-
serve all possible modeling uncertainties. Note that multiple test parameters can be
varied at the same time. For MACE, there were 24 distinct identifications performed,
attempting each of the 7 test parameters in Table 3.1. There were 4 different actu-
ators, and 17 different sensors used; 3 disassemblies and reassemblies; 1 suspension
change; 1 change in disturbance levels; 1 deterministic change; and 1 system change.
Table 3.2 gives a summary of the tests that were performed for MACE.

The deterministic change performed on MACE was the replacement of the ac-
tive strut with a more flexible passive strut. The boundary condition change was
an adjustment to the suspension system. Becausc these types of changes require a

fundamental change to the finite element model, they were excluded from the develop-
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Test Parameter Number | Comment

Actuators 4 All gimbal actuators
Disassembly /Reassembly including after 0-g flight
Time between tests from 2 weeks to 3 months
Disturbance Levels disturbance halved for 4 actuators
Boundary Conditions change of suspension system

Deterministic Change remove active strut

P S N OO

System Change remove gimbal servos

Table 3.2: Set of tests performed on MACE to observe modal uncertainties
and update the finite element model.

ment of the uncertainty model. The system change involved turning the gimbal servo
systems off, creating a fully open loop system. This change, however, also increased
the adverse nonlinear effects of stiction in the gimbals, thus giving quite different
results. Because a nonlinear model is now required for this system to be modeled
correctly, this test parameter was also not included in the development of the un-
certainty model. These three test parameters affected 8 different identification data
sets. Therefore, the total number of tests performed and utilized in the development

of the MACE 1-g uncertainty model is 16.

3.4.2 DEKF

When the actuator and sensor dynamics, time delays, Bessel filters, and notch filters
are added to the original 160 state finite element model, a 256 state input-output
model is created. To reduce the large amount of computation time required by the
DEKEF, the size of this model is reduced. First, the Bessel filters and notch filters are
modeled as time delays, which was a good approximation up to 100 Hz. Of the 80
1-g modes, only 36 of those which are important to the input-output nature of the
system are retained. This reduced the final model size to 96 states.

The damping in the input-output model is assumed to be proportional in order to
create a block diagonal form. This has the benefit of reducing the number of internal

calculations of the DEKF. Therefore, the concentrated dampers of the suspension
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system are lumped into the proportional damping. This change primarily affected
the gimbal pendular modes, and is assumed to be negligible.

The input-output model created from the finite element model is a very good
representation of the structure. Therefore, to initialize the DEKF, 3¢ values of 5%,
50%, and 50% are used for the frequencies, damping ratios, and mode shape entries
respectively. Because of the difficulty in finding actual values for sensor noises, a
noise to signal ratio of 0.2 is used for all sensors. Although this seems a bit ad hoc,
changing these values did not have a large effect on the convergence of the DEKF.

Because the MACE test article easily decouples into two systems (see Figure 2.1),
the Z axis and XY axes, the cross-coupling mode shape estimates are not param-
eterized in the DEKF because of the lack of observability. For instance, when the
disturbance actuator is the Z-axis gimbal, only Z-axis sensors are used in the DEKF.
The X and Y sensors are too noisy for good estimates. In addition, the heavily
damped sensor dynamics and time delays that are appended to the system did not
seem to effect the accuracy of the final solution, and are therefore excluded from the
DEKF parameterization.

As an example of using the DEKF for a MACE identification, a bandlimited white
noise disturbance enters into the X-axis primary gimbal (see Figure 2.1). There were
9 different sensors used: 4 strain gauges, 1 rate gyro in the primary payload and 2 rate
gyros at the center node; and two encoders at the primary (collocated) and secondary
payloads. There were 14 different modes identified, giving 154 parameters updated
in the DEKF. (Note: one sensor and actuator are collocated, and therefore use the
same parameter.) The experiment was performed for 360 seconds, and sampled at
500 Hz.

Figure 3.1 gives a comparison of the FEM, data, and identified model for two
pertinent transfer functions. As one can see, by varying only parameters of the
FEM, an updated model is created which is an excellent representation of the data.
Figure 3.2 shows the time history plots of the frequency and damping ratio for a mode
at approximately 53.5 Hz. The parameter estimates and 3¢ measurement crrors show

the DEKF beginning to converge. As these time traces are taken out further, they do
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Figure 3.1: FEM, updated, and data transfer functions for a sample identi-
fication of the DEKF on MACE.
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Figure 3.2: Time histories for the recursive DEKF, showing the convergence
of frequency and damping ratio estimates.
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indeed converge. Notice that the frequency estimate and measurement error bound
converge faster than those of the damping ratio estimate. This is intuitively correct
because the damping is a much more difficult parameter to estimate. This shows the
inherent value in the use of the 30 measurement error bounds in the development of

the uncertainty model.

3.4.3 1-g Uncertainty Model

There were 16 identifications run for MACE, 8 which update the XY parameters,
and 8 which update the Z parameters. Therefore, each parameter has 8 estimates to
create the 1-g uncertainty model using Equations 3.21 and 3.21.

Figure 3.3(a) shows how this is done for a sample frequency and damping ratio
using 8 data sets. The mean and bounds show how the weights of each of the identifi-
cations are incorporated into the uncertainty model. The estimates from each data set
(+) are weighted by the width of the grey column to create the mean (x) and bound
(—=) for the parameter. For the sample frequency, notice how the mean is heavily
weighted by the “wide” estimates in the 53.6-53.8 Hz range. The two estimates which
are greater than 54 Hz have much smaller weights, and therefore, the bound does not
incorporate them. The same trends can be seen in the sample damping ratio case.
However, notice how the larger weight on the estimate at 0.0225 creates a very large
bound for this parameter.

Figure 3.3(b) shows an overlay of the frequency response of 3 data sets and the
finite element model shifted by the mean errors of the uncertainty model, termed
“shifted” model. The variations in each data set can easily be seen, especially near
the 48 Hz and 54 Hz modes. The shifted model fits nicely as the “mean” of the
data, while the finite element model contains relatively large errors. Using the shifted
model and bounds on the critical parameters from the uncertainty model, any number
of control design techniques can be used to design robust controllers for this system.

Table 3.3 shows the MACE 1-g uncertainty model, based on the 16 sets of pa-
rameter estimates. Notice that only the controllable/observable modes are updated

and retained in the uncertainty model. Except for the gimbal pendular modes, the
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Figure 3.3: Development of 1-g control design and uncertainty models.
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Frequency Damping Ratio
Mode Type frem (Hz) | BF(%) | AF(%) | G (%) | BE%) | AL(%)
Suspension - rotary pend. 0.24 0.1 0.3 9.1 0.1 0.2
Suspension - tilt 0.44 -0.2 1.7 8.0 -4.3 2.9
Primary X Gimbal 1.19 4.2 10.5 3.7 -1.9 2.2
Primary Z Gimbal 1.23 6.9 4.2 5.6 -0.9 5.0
Secondary X Gimbal 1.26 329 35.7 5.0 0.7 9.3
Secondary Z Gimbal 1.30 12.6 2.5 5.9 1.9 8.7
Suspension - comp. pend. 1.84 -1.6 12.1 6.6 -5.2 1.8
1%t Z bending 2.24 -1.6 2.3 2.2 -1.6 0.3
1t Y bending 4.60 -5.4 4.4 6.9 -2.3 4.4
Suspension - 1%* X violin 7.13 -1.0 1.5 1.4 -0.1 3.4
Suspension - 1% Z violin 7.24 -1.5 14 0.5 0.0 0.2
2" 7 bending 9.56 24 0.9 1.2 1.3 1.9
2" Y bending 9.80 4.2 1.2 3.9 -3.2 2.9
3" Z bending 11.04 -1.3 5.6 3.7 0.3 5.8
3" Y bending 11.29 -0.3 8.1 5.9 4.7 0.9
3" Y bending 13.14 3.3 11.6 5.4 -3.7 0.9
Suspension - 27 X violin 15.12 -1.7 2.1 2.0 -0.5 1.8
4" 7 bending 16.19 1.5 2.6 1.8 -0.5 1.4
4" Y bending 17.82 0.4 1.3 0.9 -0.1 0.1
5" Y bending 24.90 1.2 1.2 1.4 -0.0 0.3
5t%h Z bending 39.41 -2.4 3.2 1.4 -0.1 1.0
6" Z bending 48.84 -5.1 2.6 1.9 -0.7 0.5
6" Y bending 49.01 -2.2 2.9 1.6 -0.7 0.2
7" Y bending 56.16 -4.5 1.1 1.5 -0.1 0.9

Table 3.3: MACE 1-g uncertainty model.

frequency errors and bounds are less than 5%. The damping errors are quite large,

however. The primary reason for this is the finite element model was updated using

frequency response data. The windowing and averaging in the process of creating the

frequency response has the adverse effects of making the system appear more heavily

damped [49]. Because the raw time histories are used in the DEKF, the damping

ratios are higher, and in addition, more accurate.
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Chapter 4

Uncertainty Localization and

Projection

Once the uncertainties for the 1-g finite element model in the form of mean error
and variance uncertainties on the eigenvalues and eigenvectors is developed, the next
step is to attempt to use all of the information available to predict the uncertainties
in 0-g. The method propbsed in this work is to localize both the mean error and
variance uncertainties to specific degrees of freedom in the structure, and then project
them into 0-g. This chapter first introduces the complete error localization and
projection problem. Then, two techniques are described to localize the uncertainties.
The first is a matrix type technique which was used for designing pre-programmed
controllers for MACE on STS-67. The next method is a more practical technique
which uses first order sensitivities and was derived after the MACE flight. In addition,
the projection of the localized uncertainties from 1-g to 0-g is developed for both
methods. Finally, once the theoretical work has been detailed, a small order example

is given to demonstrate each of these methods, and their practical limitations.
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4.1 Problem Formulation

The development of the uncertainty localization and projection methods is given in
the most general form. Therefore, the 1-g system is referred to as the “Nominal”
system and is denoted (-),. The 0-g system is referred to as the “Modified” system
and is denoted (-),,. This allows the uncertainty localization and projection methods
to be easily developed and applied to different systems from the 1-g to 0-g uncertainty
model development described in this work.

The dynamics for the discretized finite element model of the nominal system can

be written as
MNﬁN + CN":IN +Kyny =0 (4'1)

where M, € R and K, € R™>"™ are the mass and stiffness matrices respec-
tively and ny is a vector of ny physical degrees of freedom. Assuming proportional
damping, the dynamics can be described by solving the ny degree of freedom, linear

structural generalized eigenvalue problem
MDAy + K@y =0 (4.2)

where Ay € R™*™ and &, € R™WX™ are the eigenvalues and eigenvectors given by

oy = [¢N1 ¢NnN ]
Ay = diag [ ANl - Annn ] (4.3)

The eigenvectors are assumed to be mass normalized such that

OTM @, =1
PTK @y = Ay (4.4)

It is assumed that all of the n, eigenvalues and eigenvectors are available. This
assumption can be easily relaxed, although it is important to the techniques developed
here to solve for as many modes as possible, even though the accuracy of the higher

modes might be suspect.
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The finite element model is assumed to be an accurate representation of the hard-
ware. The mean error and variance uncertainties which exist between the nominal
finite element model and hardware can then be defined using a first order perturbation

to the nominal system [63].

My = My + AM,

Ky = Ky + AK,

Ay = Ay + AAy

by = By + AD, (4.5)

where (7) refers to the linear model description of the hardware (i.e. data). It is
also assumed that the eigenvalue and eigenvector perturbations are only relative for
the measured parameters, that is 7y < ny eigenvalues and the mode shapes at the
rx < iy degrees of freedom.

Under the assumption that the nominal eigénvectors &, are a sufficient set of basis
vectors which describe the hardware dynamics, changes in the eigenvectors, A®,, can

be written as a linear combination of the original eigenvectors,
Ady = BTy (4.6)

It is this equation which requires the use of as many of the eigenvectors as possible
to be retained in the finite element solution. The higher order modes, even though
they might not be accurate, create a sufficient basis for representing the eigenvalue
perturbations.

An analogous formulation can be developed for the modified system. The dynam-

ics, orthogonality conditions, and perturbation equations for the modified system

are
~Mu®yAy + Ky®y =0 (4.7)
ST M Dy = 1
OT Ky, = Ay (4.8)

69



M :MM+AMM

RM == KM + AKM

Ay = Ay + AAy

o, = &, + AdD, (4.9)
Ad, = 3, T, (4.10)

where M,, € Rmxmm K € Rmxnm Ay € R™>*™ and &, € R™*™™_ Note the
assumption still holds that the eigenvalues and eigenvector perturbations are only
relative for the measured parameters, that is 72, < n, eigenvalues and the mode
shapes at the ry < ny degrees of freedom.

Figure 4.1 gives the strategy for the uncertainty localization and projection pro-
cess for a general system. Given a finite element model and data sets for the nominal
system, an uncertainty model is developed, as shown in the two top blocks. This
uncertainty model is in the form of mean and covariance uncertainties of the eigen-
values and eigenvectors between the model and hardware, as presented in Chapter
2. Once these uncertainties have been identified, they are localized to specific phys-
ical degrees of freedom of the finite element model, in the form of mean error and
variance uncertainties of the physical mass and stiffness matrices. A mapping is then
created between the degrees of freedom of the nominal and modified systems. This
mapping is used to map the mass and stiffness uncertainties of the nominal system
into the modified system. The modified finite element model is then used to project
the mapped mass and stiffness uncertainties, creating an uncertainty model for the
modified system in the form of mean and covariance uncertainties of the eigenvalues
and eigenvectors. This is shown in the bottom two blocks of Figure 4.1.

One of the most important aspects in the development of these methods is that the
nominal uncertainty model (and subsequent uncertainty localization and projection),
is based on incomplete information: the number of frequencies (eigenvalues) that are
measured (7y) is less than (or equal to) the total number of modes in the system,

or iy < 7ny; the number of distinct actuators and sensors (mode shapes) that are
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Figure 4.1: Uncertainty model development problem.

measured (ry) is less (or equal to) the number of original degrees of freedom, or
7w < ny. This constraint ensures the methods developed are the most practicai.
With the groundwork of the uncertainty localization and projection problems laid
out as in Figure 4.1, two methods are introduced. The first is a matrix method which
manipulates the perturbed matrices introduced in this section to give mean error
and variance uncertainties for the modified system in terms of the mean error and
variance uncertainties for the nominal system. The second method is a sensitivity
method where a specific structure is given to the mass and stiffness error matrices in

the form of macroelements and scaling factors.

4.2 Matrix Method

The first method presented that localizes nominal uncertainties to specific degrees of
freedom and projects them into a modified environment is called the matrix method,
and was used in the design of controllers for the MACE flight. This method is
also detailed in Ref. 48. The matrix method attempts to find the mean error and
variance uncertainties for the modified system by directly manipulating the matrix
perturbations given in the previous section. Although similar in name to other matrix
type localization methods [16, 15], this method finds a closed form solution for both

mass and stiffness errors based on the given measurements.
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4.2.1 Uncertainty Localization

The first step in developing the matrix method is uncertainty localization. The or-

thogonality conditions for true dynamics of the nominal hardware are written as

STM Dy = 1

dTK @y = Ay (4.11)

Enforcing these conditions, and substituting the perturbed dynamics of Equations 4.5

and 4.6 into Equation 4.11 and ignoring higher order terms, yields

PTAM Dy = —Ty — VT
BTAK By = AAy — ATy — U1 AL (4.12)

The known errors AAy, ¥y can then be translated into physical mass and stiffness

errors by employing a pseudoinverse,

AMy = (81)" [~y — ¥T] (@)* (4.13)
AKy = (®0)" [AAy — AxTy — TTA] (24)F (4.14)
where (-)* refers to a pseudoinverse. A pseudoinverse is employed as a result of

the above equations being underdetermined, or the measured modes and degrees of
freedom are less than (or equal to) that of the total system, fiy < ny and ry < ny.
Therefore, although the optimization problem has been solved correctly, the solution
that is found may not be physically realizable.

Because the errors are now in physical mass and stiffness form, they correspond to
particular degrees of freedom. These physical errors of the nominal system can then
be mapped to a modified system. For instance, suppose there is a truss structure
with a plate at one end, and there is a mass error of 5% corresponding to this degree
of freedom. If the same plate is also in the modified structure, the mass error of that
degree of freedom in the modified structure is also 5%. Under this assumption, the

mapping of degrees of freedom is denoted Ty, or

T = Tuntn (4.15)
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The physical mass and stiffness errors of the modified system can then be written

in terms of the nominal mass and stiffness errors

AMy = TunAMTE,
AKy = TunAK T, (4.16)

This assumes, however, that the mapping of degrees of freedom between the two
systems can separate the nominal and modified errors. For a few cases, most notably
the modeling of gravity effects in a flexible system, this cannot be done. The modeling
of gravity stiffening and initial deformations are modeled as a superpose onto the finite
element stiffness matrix. The matrix method, therefore, cannot differentiate between

errors in modeling the physical test article, and errors in modeling the gravity effects.

4.2.2 Uncertainty Projection

Once the physical errors of the modified system are known, the eigenvalue and eigen-
vector errors can be found by manipulating the modified system. The linear structural

eigenvalue problem for the true dynamics of the modified hardware can be written as
_MMQ’;Mi;Mi + I?Mq;Mi =0 (4-17)

Substituting Equations 4.9-4.10 into Equation 4.7, and premultiplying by ¢Z. and

T
Mj?

yields
A)\Mx' = ¢’l€z [AKM - AMiAMM] ¢Mi (4'18)

Using Kronecker algebra [64], the eigenvalue errors and the matrix ¥ that defines
the eigenvector errors of the modified system are found to be linear in terms of known

nominal errors, AAy, Ady.

Ady = G, vec {Ani}
vec Ad,
e {A i}-
Yuji = Dji i (4.20)
vec Ady
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Cl = [ AzT®AiTUA (A1T®AzT _l + AiT31®AiTU¢)'q);1 ]
(4704 v, (ATeA"B,+A"BeA Uy e |
= : N — Ao LF ]
Dji = ﬁ Mi Mj
[0 (Ao +V) 05t ] =y
_ 4.21
A; = (@)Y T bwi,  vec ADL = Uyvec Ady (4:21)
B = —Ayx — Al vec AAy = Uyvec {Ani}

The unknown eigenvalue and eigenvector errors for the modified system are then

shown to be linear in terms of the known errors from the nominal system. Defining

F=[C D] (4.22)
the modified errors are _ _
Al vec { An;
il =F v} (4.23)
JAO vec Ady
Because of the linearity, the expected mean and covariance can easily be calculated.
[ A | [vee (A} ]
p| & | 2 pg|vee Pl (4.24)
Adui vec Ad,
[ Al ] vec { Ani
Cov " | = F, Cov (i) FT (4.25)
Ay vec Ad,

where E[-] and Cov[-] denote the expectation and covariance operators respectively.
The mean errors and bounds for the relevant parameters of the modified system,
i.e. the frequencies and eigenvectors, can then computed from Equations 4.24 and 4.25.

The eigenvector mean errors and bounds are computed directly,

A—QSmj =E [A¢Mij]

Adyij = 3-/var[Ady;] (4.26)

where var[-] denotes the variance operator, which is the diagonal of the covariance

matrix in Equation 4.25. The mean errors for the eigenvalues can be found similarly.
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However, more meaningful uncertainty bounds for control design are bounds on fre-
quencies rather than eigenvalues of the modified system. Assuming the eigenvalue
error is small compared to the eigenvalue, the frequency perturbation can be written

using a first order Taylor expansion.

2 fwi

Using this equation, the mean errors and bounds for each sample frequency can be

Afui = (4.27)

found.
— E [AAwi
S = S
-~ 3. y/var [A)dy;
Afy = sz[' ] (4.28)

4.3 Sensitivity Method

The second method used for uncertainty localization and projection is called the sen-
sitivity method. The use of first order sensitivities for model updating can be traced
back three decades [31,23]. The method described here, however, develops a complete
uncertainty localization strategy that not only uses the first order sensitivities as de-
scribed in Refs. 31,23, but also addresses problems such as systematically choosing
the update parameters, and handling an insufficient number of modal measurements.
In addition, the technique is adapted for the localization of variance uncertainties, as
well as mean errors. The localized mean error and variance uncertainties using the

sensitivity method are also projected to find the modified uncertainty model.

4.3.1 Uncertainty Localization

The linear structural eigenvalue problem for the true dynamics of the nominal hard-

ware can be written as

_N[N(Z;Ni;\Ni + RNQBNi =0 (4~29)
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Substituting Equations 4.5-4.6 into Equation 4.1, and premultiplying by ¢7; and ¢F;,

yields
Adyi = 05 [AKy — MiAMy] i (4.30)
i — Mgl Ungi = 8% [AKy — AjAMY] ¢ (4.31)

Instead of manipulating the matrices as was done for the matrix method, a par-
ticular form is supplied for the mass and stiffness error matrices. These perturbations

are written as
kN
AK = ZajKj
j=1
mN
AMy = BiM; (4.32)
i=1

where K; and M; are termed macroelements, a; and f; are macroelemental scale
factors which scale the relative size of each macroelement, and ky and m, refer to the
total number of macroelements for the nominal system. These macroelements can be
in the form of a finite element, a part of an element, or groups of elements. A more
detailed discussion of these macroelements is given subsequently.

Substituting Equations 4.32 into Equations 4.30-4.31 and rearranging, the follow-

ing form results for the eigenvalue and eigenvector errors.

kN mN
T

A= [0T:Kibwi] 05=Ani _ [ M;bwi] B (4.33)

kn N mN | nN r r

_ On; Kidne Oy Mjidnk oL M bni

Abi=Y_ |D ululieg | o= | A FuriBi gy — D3Py |

Jj=1 | k=1 j=1 | k=1

k#i k#i

(4.34)

The above equations are linear in terms of the macroelemental scale factors a; and

B;. Therefore, this equation can then be written in the form

84Y

AN i !
Ml =8y (4.35)
Ay P
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where

Snitt = [¢£,~K1¢m' d)z;,-Kkaﬁni]

. — T T
Switz = [—AmasN,-Mmsm» o At K b |
nN T
¢NIK1¢Nk E :¢N5Kkn!¢Nk¢
SNiZl = ANk — AN. ANg—ANi TN
k=1
i k;\’-‘l ki
T TN T T
§ : ¢ Migns S MidnNi o _} : Oy Mmp, INE _OniMmpybNi
SNi22 — |~ Nk ANE —ANg ¢Nk b} ¢N1 /\Nk ANE—ANG ¢Nk 2 ¢Nz
k=1
ay kZi

A set of linear equations can be developed for all measured errors, giving

vec {AMyi} s, Qy (4.36)
vec Ady; B -
The matrix Sy is a called a sensitivity matrix. Note that there are iy < ny measured
eigenvalues and ry < ny measurement locations.
In order to calculate the macroelemental scale factors, and subsequently the mass
and stiffness errors, a pseudoinverse is again employed. If the choice of macroelements

and scale factors is made such that their number is less than or equal to the number

of measured errors, or

kN + mN S (TN + 1)'ﬁN (4.37)

then Equation 4.36 is overdetermined, rather than underdetermined as it was for the
matrix method (Equations 4.13 and 4.14). Therefore, the solution that results from
using this pseudoinverse is physically realizable, in addition to being mathematically
optimal.

A weighted pseudoinverse is then used to calculate the macroelemental scale fac-

tors
Q vec {Ady;
T = [WySk]* Wy tAh} (4.38)
Bx vec Agy;
where the [-]* refers to the pseudoinverse and W), is a diagonal weighting matrix
CANi
Ani
Wy = diag Pl
Coni
l| @il
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and ¢, are confidence factors that are chosen is a somewhat ad hoc manner. For
instance, eigenvalue uncertainties are usually easier to calculate than mode shape
uncertainties, and are not as prone to measurement errors. Therefore, the confidence
factors are chosen to be cyy = 1.0 and ¢4y = 0.1 reflecting the higher confidence in

the eigenvalue measurements.
Because the macroelemental scale factors are linear in terms of the known errors,

the expected value and covariance can easily be calculated

E| | = (msmlE]| (B} (4.39)
i B ] vec Adyi
Cov | ™ | = [WaSu*Wi] Cov | {8} [WaSa*Wi]”  (4.40)
i B ] vec Ady;

4.3.2 Uncertainty Projection

Once in the physical domain, the mass and stiffness errors can be mapped from the
nominal to the modified system. Using the general mapping of degrees of freedom
between the two systems given in Equation 4.15, the mass and stiffness errors for the

modified system are given by

km

AKy = ajTunKThy
ji=1
mm

AMy = BiTunM; Tl (4.41)
7=1

Because the sensitivity method defines possible modeling error sources in the original
derivation of the method in the form of macroelements, it can handle the superpo-
sition of errors between the nominal and modified systems. By choosing different
macroelements K; and M;, errors that superpose such as errors in the modeling of
the test article and errors in the modeling of gravity effects, the physically correct
errors can be identified. This ability is an improvement over the more constraining
matrix method (Equation 4.16).

The number of macroelements for the modified system is generally less that the

number for the nominal system, or ky < ky and my < my. The macroelemental
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scale factors (and therefore macroelements) for the modified system can be found by

ordering the nominal scale factors such that

o] [

- -

- -

[ﬂN] = ﬁ:M (4.42)

By selecting only those macroelements (and scale factors) that affect the modified sys-
tem and mapping those macroelements, the mass and stiffness errors for the modified
system can be found using Equation 4.41.

The next step is to find the eigenvalue and eigenvector uncertainties in terms of
the mass and stiffness uncertainties for the modified system. An analogous derivation
of the sensitivity equation, given in Equation 4.33-4.36 for the nominal system, can
be made for the modified system using the macroelements in Equation 4.41. This
again gives a set of linear equations between the unknown eigenvalue and eigenvector
errors and calculated scale factors.

vec {AMyi} _s. Qi (4.43)
vec Ady; Bu

where S is the sensitivity matrix. The expected mean and covariance are then

calculated quite easily.

Al
gl veeiBhal | ool ou (4.44)
| vec Ady | Bu|
e (A ]
Cov vee {8k | _ SuCov | ™ | 5T (4.45)
| vec A | Bu

The mean and covariance of the eigenvalues and eigenvectors can then be used to

create the modified uncertainty model using Equations 4.26-4.28.

4.3.3 Macroelements

Macroelements are user defined matrices which should span the space of all possible

modeling errors. Therefore, there are many types of macroelements from which to
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Figure 4.2: Three distinct macroelements.

choose when attempting the sensitivity method. Factors which influence the choices
include: the number and location of the measurements; the number and type of
modes; the types of uncertainties that may exist in the model; and the size of the
finite element model. The factor which influences the choice of macroelements the
most, however, is the number of unknown scale factors (macroelements) must be less
than or equal to the number of measured errors, as shown in Equation 4.37.

The number of measured errors places a fundamental limit on the number of
macroelements. Because of this, three distinct types of macroelements are defined:
sub-elements, elements, and groups of elements. Sub-element based macroelements
are those errors which lie within a particular finite element, as shown in Table 2.4.
Element based macroelements are those errors which lie in different finite elements.
And finally, groups of elements based macroelements are those errors which lie in
different areas of the structure, as defined by different groups of elements. These
different types of macroelements are shown in Figure 4.2. In this section, each type of
macroelement is fully described, while in the following section, a strategy for choosing
the req-uiredAtype of macroelements for uncertainty localization is presented.

The first choice of macroelements is based on errors within the finite element, or at
the sub-element level. In Chapter 2, a thorough examination of finite element model
uncertainties is presented. Physical uncertainties such as material and geometric
properties are easily represented as errors within the element, as given in Table 2.4.

Errors in internal couplings such as joints/attachments and actuator/sensor dynamics
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that are not in the finite element model are localized using the identification procedure
such as the DEKF. Gravity effects such as geometric stiffening and initial deformations
are additions to the finite element stiffness matrix. Therefore, macroelements can be
developed using Equation 2.5 and Equations 2.7 and 2.8. The final two categories
of uncertainties are testing and nonlinearities. Because these uncertainties cannot be
expressed using linear macroelements, it is assumed that they can manifest themselves
as mean error and variance uncertainties in the macroelements developed previously.
This approach is a bit ad hoc, and a more thorough examination of these effects
should be undertaken.

The second type of macroelement is at the element level. A single macroelement
can be formed which is the summation of all of the sub-element errors corresponding
to that particular finite element. This single macroelement can then be used to
localize errors to that element (and other elements), even if the sub-element errors
are distinct.

The final type of macroelement is grouping finite element errors themselves. When
creating a finite element model, a finer and finer mesh of elements may be needed
to capture the dynamics of the structure. As a result, all of the degrees of freedom
are usually not experimentally measured. It is therefore occasionally useful to group
finite element errors together into one macroelement. The easiest manner in which to
group element errors is using insights from the finite element modeling process. For
instance, if an element is split into two equivalent elements to obtain a finer mesh,
errors in these two finite elements can be grouped together into one macroelement for
the localization process.

In addition to using modeling insight to group element errors into macroelements,
it is also useful to obtain a grouping procedure which is a function of the problem
posed. For instance, if there is a section of the structure that does not have sensors,
it may be difficult to localize errors to specific degrees of freedom. Taking a term
from the control systems community, the element errors may be unobservable. Math-
ematically, these unobservable element errors manifest themselves as singularities in

the sensitivity matrix.
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In order to examine this problem, the singular value decomposition of the weighted

sensitivity matrix of the nominal system is written as

where U, and Vj are left and right unitary matrices, and Xy is a matrix of singular
values. If there are element errors that are unobservable, they manifest themselves as
singularities, or small singular values in the decomposition. For instance, if a singular
value is 0, this is a reduction in the rank of the sensitivity matrix. For those singular
values that are small, the corresponding column of the V; matrix yields a null vector.
Therefore, the unitary matrix Vi gives a guide to grouping elements. The singular

value decomposition of the following matrix shows a simple example of this procedure.

112 12.38 0 0
0.44 —0.06 0.88
2 1 4 0 081 0
=U 0.14 098 0.00 (4.47)
316 0 0 0.00
0.88 —0.13 —0.44
41 8 0 0 0

Notice that the original matrix has two dependent columns, i.e. the third column
is two times the first. The third entry in the singular value matrix is zero, and the
third column of the unitary matrix Vy shows the first and third columns are related
by a factor of two. This method can be used to group elements as needed, thereby
reducing the number of columns of the sensitivity matrix (which is equal to the
number of macroelements) to a number which is less than the number of measured
errors. This ensures the use of an overdetermined pseudoinverse, and a physically
realizable structure of the solution.

By describing the unobservable element modeling errors in a mathematical man-
ner, a different and interesting application of this method becomes apparent. By
examining the rank of the sensitivity matrix, the physical locations of the sensors can
be chosen such that modeling errors are more observable. This is an attempt to use
the sensitivity method essentially in reverse, in order to create a better experimental

setup. This interesting application is left for future work.
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4.4 Practical Algorithm

Too many times have there been methods developed which work quite well for simple
problems, but the practical application of such methods is severely lacking. This is
exemplified in the error localization literature where most of the algorithms assume
the measurement of (or expansion to) all degrees of freedom. Although interesting,
practical application of these methods is not realistic. This section describes the appli-
cation of uncertainty localization and projection methods to a practical experiment,
specifically addressing issues such as the type of uncertainty localization technique,
the choices of macroelements, the pseudoinverse method, and effects of large modeling
€errors.

The primary item for a practical uncertainty localization and projection strategy
is the choice of technique: matrix method versus sensitivity method. It has become
obvious in the derivation of both methods that the sensitivity method is the most
practical. This is because the pseudoinverse employed in the sensitivity method is
on an overdetermined system, thus yielding physically realizable solutions. In the
matrix method, the pseudoinverse is on an underdetermined system, thus yielding
only a mathematical result which may not be physically realizable. Secondly, the
choice of macroelements allows the user to define errors which may superpose each
other. This is especially useful when gravity effects are prevalent, because they are
modeled as an superposition of the finite element model stiffness matrix.

The next step in creating a practical tool is the choice of macroelements. This
choice is heavily influenced by the number of errors measured. The macroelements
must be selected such that the number of macroelements is larger than the number of
known uncertainties. (i.e. to ensure an overdetermined pseudoinverse). The method
proposed is a three step layered approach, as shown in Figure 4.3.

The uncertainties are first localized to particular areas of the structure, using the
largest macroelements based on groups of elements. Once localized using the sen-
sitivity method, the number of macroelements are reduced by throwing out those

macroelements which do not contain large modeling errors. This is shown in Fig-
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Figure 4.3: Three step procedure for uncertainty localization using different
types of macroelements.

ure 4.3 by throwing out macroelement 2 in step 1. The remaining macroelements
are then divided to create element based macroelements. This is shown in Figure 4.3
by dividing the remaining group of elements based macroelement 1 into two element
based macroelements. A similar procedure is used in step 2 of localizing the macroele-
ments, and throwing out those macroelements which do not contain large modeling
errors. And finally step 3 is performed to localize errors within each of the finite
elements, such as an error in modeling of the modulus of elasticity, density, or gravity
effects.

In order to achieve the objective of finding the most accurate and physical mass
and stiffness errors, given errors in the eigenvalues and eigenvectors, the localization
must be performed at the sub-element level. The three step procedure proposed above,
however, acknowledges the practical case of a small number of measurements. The
discussion of macroelements at the sub-element, element, and groups of elements levels
is given in the previous section. A localization is performed at each step and must
use an overdetermined set of equations in the pseudoinverse. Note that depending
on the number of measured errors, the practical strategy could start with element or
sub-element based macroelements, rather than groups of elements.

The reduction in macroelements can bé accomplished by examining the weighted

pseudoinverse, which is found by solving the weighted least squares problem. Defining
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an error using Equation 4.36

A
ek | B g ] o (4.48)

vec Aoy B

A weighted quadratic cost can then be defined as
J = elW2ey (4.49)

where Wy is the weighting matrix defined in Equation 4.38. The solution to this
weighted quadratic minimization is the weighted pseudoinverse.

A procedure is then developed for the reduction in the number of macroelements.
First, the pseudoinverse is calculated, and the cost of the weighted least squares prob-
lem in Equation 4.49 is evaluated. Then, one macroelement is eliminated at a time,
and the cost is evaluated again. The macroelement which reduces the cost the least
is then eliminated. This procedure is repeated until there is only one macroelement
left. Figure 4.4 shows a sample plot of the normalized cost at each iteration of this
procedure.

The elimination procedure also gives a rough ordering of the importance of the
macroelements to the pseudoinverse, and therefore their importance to the uncer-
tainty localization. The usual cut off point for reducing the number of macroelements
is the point which the cost begins to increase. This is shown to be at macroelement 6
in Figure 4.4. This may have to be changed, however, if there are a lot of uncertainties.

Note that a distinct, but similar procedure can be developed for the reduction of
macroelements when localizing variance uncertainties. Using Equation 4.36, a matrix

error can be defined

[ A/\,
en = Cov | YA g oo | @ | gt (4.50)

vec Ady; B

A weighted scalar quadratic cost that is the two norm of the matrix error can then

be defined for the reduction of macroelements.

J = ||Wyexnll, (4.51)
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Figure 4.4: Example of the reduction of macroelements using the weighted
least squares cost

In this work, the pseudoinverse used is based on the singular value decomposition.

Given the weighted sensitivity matrix, a singular value decomposition is performed.
WSy = UEN VI (4.52)

where Uy and Vy are left and right unitary matrices, and ¥y is a matrix of singular
values. The singular value based pseudoinverse is then
kn+mN

1
WiSi]t = Z ;viufl foro;, > ¢ (4.53)

=1 :

The value of ¢ is chosen to reflect the conditioning of the sensitivity matrix.

The last aspect of the practical uncertainty localization and projection strategy
is the effects of using a first order linear perturbation to the structural eigenvalue
problem, which is inherently nonlinear. If the perturbations are small, the strategy
works quite well. However, when they become large, the assumptions made during

the derivation become invalid. One way to eliminate these problems is to set up an
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iterative process. In this process, the mean errors are localized using the original
finite element model of the nominal system. Then, a new system is formed with
the original finite element model and the localized mass and stiffness errors. An
eigenvalue problem is then performed on this new system. The new system is then
taken as the finite element model, and another iterations of mean error localization
is performed. Note that this is similar to a finite element model update strategy.

If the mass and stiffness errors of the nominal system are large enough to require
an iterative procedure using an eigensolution at each step, the same must be done for
the uncertainty projection. Therefore, Equation 4.44 is not used to find the projected
mean errors. An eigensolution is developed using the modified finite element model,
and the mapped mass and stiffness errors.

Although this technique works quite well with the mean errors, the variance un-
certainties or bounds are more difficult. Instead of an eigenvalue problem, a solution
must be found for a nonlinear statistics problem, which is quite difficult. The vari-
ance uncertainties are therefore found using the linear solutions developed previously
(Equations 4.40 and Equation 4.45).

Figure 4.5 shows a summary of the practical uncertainty localization and projec-
tion strategy. Note that the convergence of the iterative procedure can be checked by

examining the mean errors and the converging finite element model.

4.5 Small Order Example

An example was sought for this thesis which had the following properties: simple,
easy to understand, easy to change parameters, yet complicated enough such that
the bending and axial modes were important, and there is a system change that is
analogous to the 1-g to 0-g change in environment which is one of the central ideas
of this work.. Figure 4.6 shows the small order example that is used to analyze the
techniques developed and to add insight to the uncertainty localization and projection
problems.

The small order example is a planar system with 4 struts and three collars. Each
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Figure 4.5: Flowchart for the practical implementation of the uncertainty
localization and projection methods.

strut is a circular tube, and is divided into 2 elements, for a total of 8 beam elements.
Thg;i@i@l:eﬁ nodal points with 3 degreesrof frwegdom for each (Vertical, }}orizontal, and
rotational) giving 24 degrees of freedom. Table 4.1 summarizes the beam elérﬁént
propeftiés. The mass and stiffness matrices for these elements are standard displace-
ment based two-dimensional beam elements [65]. The mass matrix is chosen to be in
consistent form.

The small order example is an “L” shape in order to couple the vertical and

horizontal displacements of the elements. A straight cantilever beam decouples the
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Figure 4.6: Small order example: cantilevered “L” beam

vertical and horizontal displacements. There are also three nodes that contain con-
centrated masses and inertias. A description of the nodal properties is also given in
Table 4.1.

This small order example is also used to verify the projection techniques proposed
in this thesis. The change that is analogous to that of the 1-g to 0-g environment
change is a cantilevered configuration to free-free configuration. The free-free config-
uration has 9 nodal points giving 27 degrees of freedom. Table 4.2 gives a summary of
the first seven frequencies of each system. The damping is assumed to be proportional
and 1% for all modes in both the cantilevered and free-free systems.

In order to validate the methods presented, and to gain insights into the practical

situations in which the methods might perform well or poorly, three distinct cases

Property Value
Modulus of Elasticity (E) | 2.7 x 10° N/m?
Density (p) 2021 kg/m3
Outer Radius (r) 0.0128 m
Thickness (z) 0.0032 m
Length (L) 0.125 m
Nodal Mass (m) 0.6 kg
Nodal Inertia (1) 0.004 m*

Table 4.1: Beam sectional and nodal properties for the small order example
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are presented for the small order example. The first is when complete measurement
of all degrees of freedom and frequencies are available. This verifies that the methods
presented work for the best case. The second case is a more realistic scenario where
there are 4 frequencies and 4 degrees of freedom measured that are evenly spaced
within the system. These are the rotational degrees of freedom u;, us, us, and u; in
Figure 4.6. The final case is when there are 4 frequencies and 4 degrees of freedom
measured, but the degrees of freedom are concentrated in one area, while errors
exist in another area. The degrees of freedom are on the left side of the example,
i.e. uy,ug,us, and uy in Figure 4.6, and the uncertainties are scattered throughout,
included the right side. A summary of these test cases is given in Table 4.3.

In addition to the topology of the test cases, Table 4.3 also shows the uncertain-
ties (both deterministic and stochastic) introduced into the system. The errors are
presented in the form of a normal variable with mean and standard deviation errors
in percentage, or (-) = N (m, oa(y)- The sample problem is examined by sampling
the stochastic uncertainties, introducing all uncertainties into the model, and simu-
lating a large number of cases in a Monte Carlo type simulation. Case 1 examines
mean and variance uncertainties separately, while Cases 2 and 3 examine a variety of

uncertainties throughout the structure.

Cantilever (Hz) | Free-Free (Hz)

3.1 0.0

18.2 0.0

43.1 0.0

72.8 22.3

| 97.3 44.8
1202 83.3
131.2 110.3

Table 4.2: Frequencies for the cantilevered and free-free configurations of the
small order example
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Uncertainties Measurements

Case 1A | E; = N(5%,0) All frequencies

p2 = N(=5%, 0) All DOF
Case 1B | E, = N(0,2%) 7 All frequencries
ps = N(0, —2%) All DOF
Case 2 E, = N(5%, 2%) 4 frequenciesr
Ly = N(=5%,0) | wy,us,us,uz
re = N(—5%, 2%)

mer = N(3%, 0)

Case 3 Ey = N(5%, 2%) 4 ffequencies
Ly = N(-5%,0) U, Ug, Uz, Ug
6 = N(—5%, 2%)

mer = N(3%,0)

Table 4.3: Test cases for the small order example.

4.5.1 Case 1: Complete Measurements

The first test case examined is the ability of both methods to localize both mean
error and variance errors in the nominal system, and project them into the modified
system using complete measurements, i.e. measuring all of the frequencies and mode
shapes. This gives 24 + 24 x 24 = 600 pieces of information. Case 1A, as shown in
Table 4.3, examines the localization and projection of mean error uncertainties only.
The uncertainties in this case are a 5% mean error in the modulus of elasticity of
element 2, and a -5% mean error in the density of element 2. This case is particularly
interesting both mass and stiffness mean errors are introduced into the same finite
element, adding more complexity to the localization process.

Figure 4.7 shows a summary of the mean error localization and projection for
Case 1A using the matrix method. Figure 4.7(a) shows three dimensional plots of
the actual mass and stiffness errors and localized mean errors found using the matrix

method, as a function of the degrees of freedom. Notice the agreement is practi-
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cally identical. Figure 4.7(b), shows the modified or free-free finite element model
freuencies, simulated frequencies (with the uncertainties introduced), and predicted
frequencies using the model and projected mean error. Note that all points on the
plot are normalized by the corresponding free-free finite element model frequency.
The prediction of the mean errors in frequency using the matrix method works very
well for this case.

The sensitivity method performed for this case utilizes a two step procedure:
localize to elements and reduce the number of elements; localize to sub-elements.
Although the number of measured errors is large enough such that this two step
procedure is not necessary, it is detailed in this manner to demonstrate the general
sensitivity technique. It is also the most commonly used strategy. Note that a one
step strategy would not have improved the results.

The first step of the two-step sensitivity method involves localizing to particular
finite elements. For this step, each mass (8) and stiffness (8) finite element and
each concentrated mass/inertia (3) are used, comprising a total of 19 macroelements.
Figure 4.8(a) shows a plot of the cost for the pseudoinverse in the sensitivity method,
as each macroelement is eliminated. Notice that if 8 macroelements are used, the
pseudoinverse, and therefore the localization method, performs essentially as well as
if 19 macroelements are used; and there is ohly a slight difference in cost when using 4
macroelements. Also notice that the elimination procedure orders the macroelements.
This is seen in Figure 4.8(a) as weighted least squares cost is substantially reduced
using the first two macroelements. Because there are only two mean errors, the rough
ordering of macroelements places the two macroelements that are the modeling error
sources first.

The decision is made to use the first 8 macroelements. These 8 macroelements
are either mass, stiffness, or nodal mass elements. The retained mass and stiffness
macroelements are split into three sub-elements for use in the next step of the lo-
calization procedure. Table 2.4 shows the many variations of sub-elements that can
be used. For this step of the localization, only threc are relavent: AFE, Ap, and

AL. The perturbation At can be represented with the macroelements chosen, and
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(b) Frequency results for cantilever to free-free projection of mean errors.

Figure 4.7: Matrix method for Case 1A using complete measurements.
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the perturbation Av is not applicable for this two-dimensional problem. In addition,
the Ar perturbation is quite similar to a combination of AE and Ap, except for the
extensional degree of freedom. Because the measured degrees of freedom and modes
are rotational, the Ar perturbation is almost indistiguishable from the AE and Ap
errors.

By examining retained mass and stiffness (and concentrated mass/inertia) element
based macroelements from step one, and the possible sub-elements described above,
the macroelements of step two of the sensitivity method are then created. A total
of 22 macroelements are then used for this step of the process. Figure 4.8(b) shows
the weighted least squares cost for this step of the localization strategy as a function
of the given macroelements. Notice the first two elements again substantially reduce
the cost as a result of ordering the correct two macroelements first.

Figure 4.9 shows a summary of the uncertainty localization and projection for
Case 1A using the two step sensitivity method. Figure 4.9(a) shows the actual mass
and stiffness errors to be predicted correctly, as they were for the matrix method.
Figure 4.9(b) shows the frequency results for the modified, or free-free system, which
again shows good agreement. The sensitivity method described here uses only one
iteration of the general strategy shown in Figure 4.5. If the mean error localization
had not performed adequately, additional iterations could have been performed to
improve the results. An example of when and how the iteration procedure of the
sensitivity method is used is given in a subsequent example.

Case 1B is similar to the previous case, however, variance uncertainties are lo-
calized and projected instead of mean errors. Examining variance uncertainties is
more difficult than the case with mean errors because localized mass and stiffness
uncertainties cannot be described pictorially. For the mean error case, once the
macroelemental scale factors are found, and mass and stiffness error matrices can be
calculated and compared to the actual error matrices. For the variance uncertainty
case, however, this cannot be done. One can only examine the macroclemental scale
factors themselves, which are in the form of a covariance matrix. The easiest check

to ensure the validity of the localization and projection of variance uncertainties is
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Figure 4.8: Weighted least squares cost showing the possible elimination of
macroelements.
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(a) Mass and stiffness mean error matrices.
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Figure 4.9: Sensitivity method for Case 1A using complete measurements.
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to run many simulated cases while sampling the uncertainties, for both the nominal
and modified systems. Then the variance uncertainties of the nominal system can be
calculated and projected into the modified environment where they can be compared
to the simulated results of the modified system. This is the format for Case 1B.

As shown in Table 4.3, Case 1B uses a 2% standard deviation in both the modulus
of elasticity and density of element 2, and there is no mean error. Therefore, in most
cases the random error in the modulus of elasticity and density of element 2 is less
than 6%. There were 100 cases simulated (with the two variables being random),
and the frequencies and modes shapes are calculated for each. Figure 4.10 shows
the frequency results of the localization of the variance uncertainties and projection
using both the matrix and sensitivity methods for Case 1B. The simulated bounds are
calculated from the 100 simulated cases, and the projected bounds are those bounds
that are predicted using the uncertainty localization and projection methods. Both
methods again work quite well in predicting the bounds for the case when all of the
degrees of freedom and frequencies are measured.

The localization of variance uncertainties using the sensitivity method also used
a two-step procedure, along with the same macroelements descrbed previously. Note

that the matrix error and cost defined in Equations 4.50-4.51.

4.5.2 Case 2: Partial Measurements

Case 1 verified that the uncertainty localization and projection methods developed
in this thesis work well using measurement of all degrees of freedom and frequencies.
One of the primary objectives of this work, however. is to develop methods that also
work well for practical problems. Case 2 applies these methods to a more practical
case.

Case 2, as shown in Table 4.3, contains only partial measurement of the modal
parameters of the system. There are 4 modes measured, and 4 degrees of freedom,
giving 4 + 4 x 4 = 20 total measurements. The 4 degrees of freedom are rotational
and are evenly spaced along the beam. These are shown as uj,us, us, and u; in

Figure 4.6. There are uncertainties, both deterministic and stochastic, in four areas
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Figure 4.10: Localization and projection of variance uncertainties to predict
frequency bounds for Case 1B using complete measurements.
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of the structure, as shown in Table 4.3. These four areas are spread throughout the
structure: the modulus of element 2, the length of element 4, the outer radius of
element 6, and the mass and inertia of the node (collar) between elements 6 and 7.
For Case 2, 10 simulated cases are run for both the nominal and modified systems,
with the mean error and variance uncertainties in measured frequencies and mode
shapes calculated for each. The nominal mean error and variance uncertainties are
then localized and projected into the modified system to predict the corresponding
uncertainty model. These predictions can then be checked by comparing the 10
simulated cases of the modified system.

Figure 4.11 shows the localized and actual mass and stiffness error matrices us-
ing the matrix method. The localized mass and stiffness error matrices do not re-
semble the actual error matrices. The matrix method supplies mass and stiffness
error matrices that are not physical, resulting from the use of a pseudoinverse on an
overdetermined system in the derivation. The results still solve the given optimiza-
tion problem, however. Predictably, when these error matrices are projected into the
modified, or free-free system, the predicted results are extremely poor, such that they
are not presented here.

Figure 4.12 shows the results of the sensitivity method for Case 2. The two-step
localization procedure similar to that used previously is employed, i.e. the same ele-
ment and sub-element based macroelements. Figure 4.12(a) shows the predicted and
actual mass and stiffness mean error matrices. The agreement using the sensitivity
method is excellent. Figure 4.12(b) shows the frequency results of projecting of both
the mean error and variance uncertainties into the modified system to predict the free-
free frequencies and bounds. Shown are the FEM frequencies, projected frequency
and bound for four sample frequencies, and 10 simulated cases of for the free-free
system. The sensitivity method works quite well in predicting both the mean errors
and bounds, such that each of the simulated cases are within the predictions. The
sensitivity method works well because both the modeling error sources are correctly
spanned by chosen macroelements and the pseudoinverse used is on an overdetermined

system.
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Figure 4.11: Matrix Method for Case 2 using partial measurements.

4.5.3 Case 3: Partial Measurements

The final case examined uses the same uncertainties as in the previous case, but
the measurements are now on the first four nodes. This is shown in Figure 4.6 as
four rotational degrees of freedom wu;, us, u3, and u4. This implies that a few of the
uncertainties, i.e. rg in element 6 and mg.; do not have measured degrees of freedom
near the unmodeled area. This case demonstrates the ability of the methods to
localize errors in areas of the structure that are not completely observable to the
Sensor measurements.

For this case, the matrix method produced results that were inconsistent, similar
to those for Case 2. They are therefore not presented here. Figure 4.13 shows the
mass and stiffness mean error matrices, and projection for the sensitivity method.
The localized mass and stiffness mean errors are quite similar to the actual errors,
though they are not identical. The predicted mass error in the mg.7 is larger, while the

predicted stiffness error matrix is smaller compared to the actual mass and stiffness
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Figure 4.12: Sensitivity Method for Case 2 using partial measurements.
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errors. This can also be seen in the projection, shown in Figure 4.13(b). While the
predicted mean errors are quite good, they do not predict the range of all of the
simulated frequencies. For the 22.3 Hz mode, the predicted mean error shifts the
model near the simulated frequency samples, but there still remains a residual error
such that the predicted mean error and bound does not match the simulated free-free
samples for any case.

In order to accurately predict both the mean errors and bounds, the iterative
strategy proposed in the development of the sensitivity method is implemented. This
general strategy is shown in Figure 4.5. For this case, 5 iterations of the two step
uncertainty localization process are implemented. Figure 4.14 plots the updated
cantilevered and projected free-free mean frequencies (—), along with the simulated
mean (x) and actual frequencies (o), as a function of iteration. Note each point
is normalized to the actual frequencies. Therefore, the parameters should converge
to the simulated mean, instead of the actual parameter value. In one iteration, the
sensitivity method works well, but a few of the frequencies have not converged to
their respective simulated means. After two iterations, however, the method predicts
the simulated mean frequencies quite well. And after 5 iterations, it works very well.

Figure 4.15 shows the results of this uncertainty localization and projection af-
ter using 5 iterations (Compared to the analogous plots after using 1 iteration in
Figure 4.13). Figure 4.15(a) shows the mass and stiffness mean error matrices are
now localized quite well. In addition, Figure 4.15(b) shows the projected mean errors
and bounds for the frequencies of the free-free system now predicted the simulated
samples as well. This example demonstrates that the sensitivity method works quite
well on the first iteration as a course adjustment, but may, on a few occasions, need a
few more iterations for fine adjustments. The best manner in which to predict when
multiple iterations are needed is to examine each nominal mean error localization. If
the updated system matches the mean of the nominal data quite well, then another
iteration is not needed. If, however, there are still small residual errors, a few more

iterations will improve both the localized error matrices and projection procedure.
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(b) Frequency results for cantilever to free-frec projection of mean error and variance
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Figure 4.13: Sensitivity Method for Case 3 using partial measurements and
one iteration.
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(b) Free-free frequencies for 5 iterations.

Figure 4.14: Frequency results using multiple iterations of the Sensitivity
Method for Case 3 using partial measurements. (—) - updated
or projected frequencies, (x) - simulated mean frequency, (o) -

actual frequency.
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(b) Frequency results for cantilever to free-free projection of mean error and variance
uncertainties.

Figure 4.15: Sensitivity Method for Case 3 using partial measurements and
9 iterations.

105



106



Chapter 5

Experimental Verification

This chapter is used to experimentally verify the uncertainty localization and pro-
jection methods developed previously. The Middeck Active Control Experiment
(MACE) is used to demonstrate the feasibility of these techniques in an experimental
setting, while also showing their strengths and weaknesses. Two types of experiments
are used to evaluate these methods. The first is using the MACE 1-g system as nom-
inal to predict the modified MACE 0-g uncertainty model. This was the primary
objective of the development of these methods for the MACE flight. The second ex-
periment utilizes a different configuration of the MACE test article. Figure 5.1 shows
two configurations of the MACE test article used during the flight, termed Configu-
ration I and II. The second experiment uses the MACE 0-g Configuration I system
as nominal to predict the modified MACE 0-g Configuration II uncertainty model.
In addition to demonstrating these methods experimentally, these experiments also

give insights into where improvements of the methods can be made.
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Figure 5.1: Two 0-g configurations of the MACE test article.

5.1 MACE Configuration I 1-g to 0—g

The first experiment used to verify the uncertainty localization and projection meth-
ods developed in this work is MACE Configuration I 1-g, shown in Figure 2.1, to
Configuration I 0-g, shown in Figure 5.1(a). For MACE, this projection was the
basis for all controllers developed prior to flight. In addition, because of the change

from 1-g to O-g and the reduction of overall degrees of freedom with the removal
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of the suspension system, this prediction is quite a challenging task for the methods
developed in this work.

Details of the MACE Configuration I 1-g to 0-g uncertainty localization and
projection are given in Table 5.1. The nominal system is MACE Configuration I in
1-g. The 1-g finite element model for MACE contains n, = 678 degrees of freedom,
of which 375 modes are retained from Nastran [66]. There are 16 data sets available
for identification, producing ry = 17 measured degrees of freedom (9 XY axes + 8 Z
axis) and iy = 24 measured frequencies (14 XY axes + 10 Z axis). This gives 230
measured modal uncertainties in the MACE 1-g uncertainty model (140 XY axes +
90 Z axis). Note that this puts an upper limit on the number of macroelements used
in the uncertainty localization. A summary of the MACE 1-g uncertainty model is
given in Chapter 2.

The modified system is MACE Configuration T in 0-g. The 0-g finite element
model for MACE contains n, = 480 degrees of freedom, of which 280 modes are
retained from Nastran. There are 12 data sets available for identification, producing
rv = 17 measured degrees of freedom (9 XY axes + 8 Z axis) and 7y = 24 measured

frequencies (14 XY axes + 10 Z axis).

Property Nominal (1-g) Modified (0-g)
degrees of freedom (n(,) 678 480

FEM modes retained 375 280
measured degrees of freedom (r(,) 9XY+8Z =17 |[9XY +8Z =17
measured frequencies (7i.)) 14XY+10Z=24 | 8XY+6Z=14
number of data sets 16 12
stiffness elements 99 69

mass elements 59 32
concentrated spring elements 9 0
concentrated mass/inertia elements 39 33

Table 5.1: MACE Configuration I 1-g to 0-g summary.
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In mapping the degrees of freedom between the two systems, one needs to examine
the nominal and modified finite element models. The modified 0-g finite element
model is developed by removing the suspension degrees of freedom, and eliminating
the nonlinear iterative technique to add the gravity stiffening and initial deformation.
The 1-g and 0-g finite element models are set up such that the mapping between

systems given by ny = Tux?y IS

Tun = [ Isg0  04s0.198 ] (5.1)

For this experiment, both the matrix method and sensitivity method are used
to localize and project the uncertainties. The matrix method is presented primarily
because it was the method used for the MACE flight. Therefore, it was performed
with no prior knowledge of the O—g data. It was the basis of the uncertainty model
used in all of the closed loop experiments designed prior to flight. The sensitivity
method, although developed after the MACE flight, is presented as an improved

technique, and a better method for uncertainty localization and projection.

5.1.1 Matrix Method

For the MACE flight, the matrix method was used to develop an uncertainty model
in 0-g. Prior to flight, however, there was minimal information available for the pro-
jection. For instance, rather than the DEKF, a technique called Frequency domain
Observability Range Space Extraction (FORSE) [40], along with a Nonlinear Loga-
rithmic Least Squares Method (NLLS) [47] were used to obtain measurement models.
In addition, the measurement models were developed using the MACE system with
gimbal servos. Information about normal mode shapes at the measured degrees of
freedom was quite difficult to extract. Therefore, only frequency errors were localized
and projected for the MACE flight.

Figure 5.2 shows the frequency results of the MACE 1-g to 0-g projection using
the matrix method, and based only on 1-g frequency uncertainties. All model and
data points are normalized by the corresponding 0-g finite element model frequency.

Note that the 0-g data was only available after the flight. In addition, the modes
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are divided into XY and Z axes categories depending on their contribution for ease
of explanation. The mean errors and bounds are exactly those used for designing
controllers for the MACE flight. There are a few modes, such as 3.73, 39.56, and
49.67 Hz modes in which the projection works quite well. Other modes such as at
9.46, 49.18, and 56.97 Hz where the method seems to predict the sign of the mean
error, but not the magnitude. And finally there are those modes such as at 2.26,
16.11, 17.84, and 25.03 Hz where the method does not even predict the sign of the
mean error correctly. In examining these results, there is nothing consistent that can
be concluded. This is primarily because the matrix method uses a pseudoinverse on
an underdetermined system, thus giving results that may not be physically realizable.
Another possible error with the matrix method is that gravity stiffening and initial
deformation, which manifests themselves as a superposition of the stiffness matrix,
is neglected. The matrix method cannot differentiate between physical errors in the
stiffness matrix, and errors in the modeling of the gravity effects.

The matrix method was also performed using the MACE 1-g uncertainty model
developed using the DEKF, including the mode shape uncertainties. The frequency
results for this case are shown in Figure 5.3. The results for this case are similar to
those when only eigenvector uncertainties are used, shown in Figure 5.2, and again

quite inconclusive.

5.1.2 Sensitivity Method

After the MACE flight, the sensitivity method was developed in an attempt to rectify
the inconsistencies of the matrix method, and develop the best method possible for
uncertainty localization and projection, given all of the uncertainty information. The
use of the sensitivity method therefore has the benefit of using mode shape, as well
as frequency uncertainty data. Although this seems to disable the comparison of
the methods, it should be noted that the matrix method is presented as the results
prior to flight, while the sensitivity method is presented as the best technique for
uncertainty localization and projection.

In developing the nominal 1-g finite element model, there are 99 stiffness elements,
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Figure 5.2: MACE Configuration I 1-g to 0-g projection using the matrix
method with eigenvalue uncertainties..
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method with eigenvalue and eigenvector uncertainties.
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59 mass elements, 9 concentrated spring elements, and 39 concentrated inertia ele-
ments, for a total of 206. Because there are 230 measured uncertainties in the nominal
system, only two steps of uncertainty localization are needed: at the element level,
and at the sub-element level.

Uncertainty localization at the sub-element level again requires an examination
of the element. Table 2.4 shows the six physical uncertainties that can be used in
developing macroelements at the sub-element level. For this experiment, only the
physical uncertainties AFE, Ap, and AL are used, giving two independent mass and
two independent stiffness sub-elements. The physical uncertainty At can be found by
using a combination of the sub-elements already used; Av is assumed to be negligible.
The physical uncertainty Ar is very similar to AE and Ap. The only difference
is in the torsional and rod degrees of freedom. The modes that are identified are
bending, and the degrees of freedom measured are rotational. It therefore assumed
that the physical uncertainty Ar can be reproduced using a combination of AE and
Ap macroelements with only minor errors introduced.

In addition to the physical uncertainties, gravity macroelements are also defined.
In Chapter 2, the gravity effects presented are gravity stiffening and initial defor-
mation. One can examine the nonlinear procedure from Nastran to find the type
and magnitude of the gravity effects. Also, one can examine the gravity stiffening
and initial deformation adjustments given in Equations 2.5-2.8. It was found that
the primary gravity effects are: gravity stiffening and initial sag in the Lexan beam
elements; gravity stiffening in the gimbals; and gravity stiffening in the suspensions
cables. These gravity effects are also used in the development of macroelements at
the sub-element level.

A two step uncertainty localization procedure was employed. Note that at at
each of the two steps, a reduction in the macroelements is performed. Figure 5.4 is
a pictorial representation of the location of the errors in stiffness matrix for MACE
in 1-g. This was formed by examining the macroelements that are retained in the
two step localization procedure. Note that this figure only gives the location of the

errors retained, and not the magnitude. The axes on the left and top (given a square
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stiffness matrix) correspond to different degrees of freedom, where the abbreviations

are given as follows:

N1 - Nodel
S1 - Strutl
N2 - Node2
S2 - Strut 2 (Active)
N3 - Node3
S3 - Strut 3
N4 - Node 4
S4 - Strut 4
N5 ~ Nodeb
RRG - Reaction Wheel Rate Gyros
PG - Primary Gimbal
SG - Secondary Gimbal
RWA - Reaction Wheel Assembly
U.B - Suspension Universal Joints (bottom)
U.T - Suspension Universal Joints (top)
Cl1 - Suspension Cable 1
C2 - Suspension Cable 2

C3 Suspension Cable 3
C2S5 - Cable to Suspension Attachments

|

In addition, there are dotted lines in the figures to aid in the location of the errors.
For instance, the first vertical and horizontal dotted lines separates node 1 from strut
1; the second lines separate strut 1 from node 2, and so on.

Figure 5.4(a) shows the localized mean errors of the stiffness matrix that pertain
to the physical test article. It is not surprising that most of the stiffness uncertainties
in the test article shown in Figure 5.4(a) are localized to the struts. This is because
the measured modes are flexible modes which are primarily bending in the struts.
The types of physical uncertainties are a combination of changes in the modulus AE
and length AL. Tt is difficult to gain insight into such a large system such as this.
However, general trends are that there are modulus errors at the ends of the struts,
where there is a larger radius. This may indicate an error in radius (i.e. inertia). In
addition, there are both length and modulus errors in the active strut. This area is
likely to be the source of modeling errors because the different materials being used

are modeled as a composite material. And finally, the lengths of the middle of the
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Figure 5.4: MACE 1-g localized stiffness matrix mean error uncertainties.
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struts, i.e. where the strain gauges are located, also are occasionally in error.

The localized errors in the modeling of gravity effects are shown in Figure 5.4(b).
These uncertainties are primarily localized to the active strut area and the secondary
gimbal. The secondary gimbal area makes sense because four of the identified modes
are gimbal pendular modes, which are stiffened with the Nastran stiffening adjust-
ment. The active strut area is more difficult to interpret, however. Although it makes
sense for this area to contain large errors, it does not make sense that these errors are
primarily due to gravity. It may be that this area contains large errors, and sensitivity
method has trouble making the distinction between errors in the gravity adjustment,
and errors in the physical parameters. In addition, the center element of each strut
where the strain gauge acts appears to be the source of gravity modeling errors.

A final gravity adjustment that seems to be in error is in the suspension cables.
Because there are very large gravity effects captured in the tensioning of the suspen-
sion cables, intuitively there should be a lot of modeling errors in this area. However,
this is not the case, as shown in Figure 5.4(b). This may be a result of the lack of
measured suspension information, i.e. few measured suspension modes and degrees of
freedom.

In addition to stiffness uncertainties, the sensitivity method also localizes mean
errors in the mass matrix. Figure 5.5 shows the localized mass errors. Notice that
there are very few mass uncertainties. This is understandable because masses and
inertias are measured more easily than other parameters such as the modulus of
elasticity. Figure 5.5 shows that the mass properties for MACE are modeled quite
well.

Figure 5.6 shows the frequency'results of the projection of both the 1-g mean
error and variance uncertainties into 0-g for MACE using the sensitivity method.
Notice the improvement using the sensitivity method compared to the matrix method
(Figure 5.3). The prediction of mean errors and bounds is excellent for all but the 2.26
and 9.46 Hz modes. It is thought that these modes are difficult to predict because of
their coupling with the gravity effects.

The process of localizing uncertainties for the MACE system was quite a difficult
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Figure 5.5: MACE 1-g localized mass matrix mean error uncertainties.

task for the MACE 1-g to 0—-g example. It is thought that the number and type of
sensors make it difficult for the sensitivity method to ascertain the difference between
a physical uncertainty in an element, such as an error in the modulus, and a gravity
stiffening uncertainty, such as an initial deformation. In addition, the sensitivity
method (and localization and update methods in general) work best for small errors in
the already defined parameters. The errors in gravity effects that are localized tended
to be quite large. Table 5.2 shows a summary of the mean changes of frequencies from
1-g to O-g, along with the predicted change in finite element models from 1-g to 0—g.
For some modes such as 4.6 Hz, the finite element model predicts the changes quite
well. However, for modes such as 17.82, 24.89, and 56.16 Hz, the predicted change
is incorrect in Signrand magnitude. This indicates difficulties in the modeling, which
can only be overcome by a more thorough modeling of the gravity effects.

In order to accurately model and update modeling of gravity effects, a large num-

ber of different types of sensors must be used. Additional sensors on the nodes of the
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1-g Freciuency (Hz) | FEM 1-g to 0-g (%) | Data 1-g to 0-g (%)
2.24 -1.1 -7.8
4.60 18.9 17.7
9.79 3.3 24

16.19 0.4 4.1
17.82 -0.1 1.7
24.89 -0.5 2.9
39.41 -0.3 0.0
| 48.84 -0.6 4.2
49.01 -1.3 -0.9
56.16 -1.4 7.8

Table 5.2: MACE 1-g to 0-g changes

test article and the suspension system would aid in the localization of errors in the
modeling of gravity effects. In addition, more input into the modeling of the gravity
effects is needed, rather than assuming that the nonlinear iterative gravity stiffening
procedure in Nastran works correctly. Although is appears that this procedure works
well for gravity stiffening in the cables and the gimbals, it may need additional tuning
for the gravity effects within the test article that is not available.

An additional piece of work that could have been attempted in the MACE 1-g to
0-g example is the use of the iterative uncertainty localization strategy as shown in
Figure 4.5. This more complex strategy may have improved the results for the 2.26
and 9.46 Hz modes. However, because of the difficulties in using a sparse eigenvalue
solver that could also handle multiple rigid body modes, this option was not attempted
and is left for future work.

In order to show the overall results of the uncertainty localization and projection
for the sensitivity method including mode shapes uncertainties, transfer functions are
plotted. Figure 5.7(a) shows the transfer function from primary X gimbal to primary

X rate gyro using the 0-g finite element model, the 0-g finite element model shifted
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by the projected mean errors, and three data sets taken on-orbit. Note that the
0—g damping ratios are shifted by the mean errors from the 1-g uncertainty model.
Although similar, there are two important areas of improvement of the shifted model.
First, at high frequency, the 56.97 Hz mode has been predicted correctly, while there
is a 156% error in the finite element model. Secondly, the residue of 17.84 Hz mode
in the shifted model matches that of the data, thus changing the sign of the finite
element model residue.

Similar improvements can be seen in Figure 5.7(b), which plots primary Z gimbal
to strut 3 strain gauge. At high frequency, the 49.18 Hz mode has been predicted
correctly; and the zero at approximately 6 Hz is more lightly damped, thus more
accurately matching the data. Note also the small error in the prediction of the 2.24
Hz mode resulting from the incorrect prediction in the projected 0-g uncertainty
model.

The three 0—g transfer functions shown in Figure 5.7 are taken from identification
experiments using three different amplitude levels. Notice in Figure 5.7(b) there is
a small resonance that occurs in one of the transfer functions. This indicates the
structure possibly contains stronger nonlinearities than first suspected. Therefore,
another possible source of error in the uncertainty localization and projection process

is strong nonlinearities in the system.

5.2 MACE 0-g Configuration I to Configuration II

The second experiment used to verify the uncertainty localization and projection
methods developed in this work is MACE 0-g Configuration I, shown in Figure 5.1(a),
to 0-g Configuration II, shown in Figure 5.1(b). This example is much simpler than
the previous 1-g to 0—g projection because there are no modeling of gravity effects or
suspension degrees of freedom.

Details of the MACE 0-g Configuration I to 0-g Configuration II uncertainty
localization and projection are given in Table 5.3. The nominal system is MACE

Configuration I in 0-g. The 0-g finite element model for MACE contains n,, = 480

122



Property

Nominal (0-g C1)

Modified (0-g C2)

degrees of freedom (n(,)
FEM modes retained
measured degrees of freedom (7))

measured frequencies (7))

480

280
9XY+8Z =17
8XY+62=14

480

280
9XY +8Z =17
8XY+67Z=14

number of data sets 12 4
stiffness elements 69 69
mass elements 32 32
concentrated spring elements 0 0
concentrated mass/inertia elements 33 33

Table 5.3: MACE 0-g Configuration I to Configuration IT summary.

degrees of freedom, of which 280 modes are retained from Nastran. There are 12 data
sets available for identification, producing ry = 17 measured degrees of freedom (9 XY
axes + 8 Z axis) and 71y = 14 measured frequencies (8 XY axes + 6 Z axis). This gives
134 measured modal uncertainties in the MACE 0-g uncertainty model (80 XY axes
+ 54 Z axis). Note that this puts an upper limit on the number of macroelements used
in the uncertainty localization. The MACE 0-g uncertainty model was developed in
an analogous manner to the 1-g uncertainty model presented in Chapter 2.

The modified system is MACE Configuration II in 0—-g. The 0-g finite element
model for the second configuration of MACE contains n,, = 480 degrees of freedom,
of which 280 modes are retained from Nastran. There are 12 data sets available for
identification, producing ry = 17 measured degrees of freedom (9 XY axes + 8 Z axis)
and 7y = 14 measured frequencies (8 XY axes + 6 Z axis). Notice the similarities
between the two systems, as shown in Table 5.3. ‘

In mapping the degrees of freedom between the two systems, one needs to examine
the Configuration I and Configuration II finite element models. The Configuration II
finite element model is developed by rotating the corresponding degrees of freedom

that have been turned down in the “L” shape. This rotatiou matrix for each node is
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given by

[0 10
100 0
0 0 1
Ty, = (5.2)
0 10
0 —100
0 0 1

By mapping the other degrees of freedom as one to one, the modified to nominal, or
Configuration II to Configuration I mapping 7,y can be developed.

Figure 5.8 shows the localized mass and stiffness mean error matrices for the
0-g uncertainty model. Although it is difficult to compare to those localized in
1-g because there is no insight into the magnitude of the errors, there are a few
similarities. First, the mass contribution is again quite small. This again shows how
well the masses/inertias are modeled for MACE. In addition, the active strut degrees
of freedom again were the subject of large errors, as were the ends of each of the
passive struts. Overall, the comparison is fairly good.

Figure 5.9 shows the frequency results of the MACE 0-g Configuration I to Config-
uration II projection. Notice how most of the Configuration II data points lie within
the mean errors and bounds predicted using the uncertainty localization and projec-
tion methods. The only points which do not (8.41 and 17.60 Hz) have only one point
that is not within the predicted ranges, and in each case, the parameter estimate had
not converged in the DEKF. With more time domain data, these estimates would be
within the predicted ranges as well. Application of the methods to this example was
much simpler, and easier to do compared to the 1-g to 0-g projection because of the
elimination of the gravity effects and suspension degrees of freedom.

Table 5.4 shows the change between the Configuration I and Configuration II
frequencies of the finite element model and data. Notice that although the magnitude
is not always correct, the general trends are very good. This shows that the overall
modeling of the MACE test article is very good, which makes it quite easy to localize

and project the remaining small uncertainties.
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Figure 5.8: MACE 0-g Configuration I localized mean error uncertainties.
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Figure 5.9: MACE 0-g Configuration I to Configuration II (C2) projection
using the sensitivity method.
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0-g C1 Frequency (Hz) | FEM 0-g C1 to C2 (%) | Data 0-g C1 to C2 (%)
2.26 -4.6 -8.0
3.73 -53.0 -43.4
9.46 13.6 11.1

16.11 -18.3 -17.8
17.84 0.5 1.3
25.03 -4.5 -3.7
39.56 26.9 19.7
49.18 8.8 13.1
49.67 28.6 254
56.97 0.5 12.4

Table 5.4: MACE 0-g Configuration I to Configuration II changes

Figure 5.10 shows two transfer functions of the Configuration II finite element
model, the Configuration II finite element model shifted by the mean errors of the
projected uncertainty model, and the corresponding 0-g Configuration II transfer

function data. In both cases, the predicted transfer functions look more accurate,

especially at higher frequencies.

The final aspect of this example investigated was the examination of the localized
errors for Configuration II of MACE. Figure 5.11 shows the localized mass and stiffness
errors for Configuration II. Again the same general trends exist: little mass error and
errors in the active strut and ends of the passive struts. Although it is difficult to

compare the 0—g Configuration I and Configuration II localized errors, qualitatively

the errors localized tended to be quite similar.
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Figure 5.10: MACE 0-g Configuration II (C2) FEM, 0-g C2 FEM shifted
by projected mean errors, and one set of data.
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Chapter 6

Controller Synthesis and Analysis

This chapter describes the use of an uncertainty model as a tool for control synthesis
and analysis. The uncertainty model, in the form of mean errors and bounds on
critical modal parameters of a finite element model, can be from either the nominal
or modified systems. This chapter demonstrates the usefulness of an uncertainty
model in control design on flexible systems. First, the general control design problem
for uncertain systems is presented. An overview of controller synthesis and analysis
methods which benefit from the use of an uncertainty model is given. In addition,
the controller synthesis and analysis techniques used for the MACE flight are detailed
showing an application of the uncertainty model for control design in an experimental
setting. These methods make use of the finite element model, uncertainty model, and
a real-y analysis tool. The use of these methods is demonstrated experimentally using
0-g controllers for MACE that were designed using the predicted 0-g uncertainty
model. In addition, the conservatism of the nncertainty model is examined for each

of the controllers presented.
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Figure 6.1: Interconnection of plant G, controller K, and uncertain block A.
6.1 Control of Uncertain Systems

The design of controllers of uncertain structural systems is one of the most challeng-
ing problems in the field of controlled structures. Stringent performance requirements
necessitate the use of high authority controllers. The success of these controllers,
however, is directly linked to the accuracy of the modeling of the system and uncer-
tainties, as well as the ability of the robust control design technique to handle the
uncertainties.

Uncertainties in a structural system which are important to control design are usu-
ally caused by both unmodeled and mismodeled dynamics. Unmodeled uncertainties
are usually at higher frequencies, and are treated using an unstructured block as
shown in Figure 6.1, where G is the plant dynamics, and A is an unstructured un-
certainty block. Although this type of uncertainty is important, it does not limit
the achievable performance in the problem described in this work. It is therefore not
examined here.

Mismodeled dynamics are the primary cause of the parametric uncertainty similar
to that in the uncertainty model described in this work, i.e. mean errors and bounds
on the modal parameters. Because of the direct form of the uncertainty, the A block
in Figure 6.1 can be structured to fit the type of uncertainty for which the system is
being designed/examined. This is the typer of uncertainty for control design which is

examined here.
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6.1.1 Controller Synthesis

Techniques used to design controllers which are robust to parametric uncertainty can
essentially be divided into six distinct categories: norm-based, p, multiple model,
stochastic, de-sensitizing and classical. A brief overview of these methods is given
here.

Norm-based methods are those methods in the Hs and H, framework which ad-
dress the problem of parametric uncertainty. Guarantees on robust stability using an
unstructured, complex block can be made using an H,, control design technique [67].
In the H; framework, robustness is added by coupling an H., uncertainty test with
an H, performance metric [68].

To reduce the conservatism inherent in a single complex block, the u-synthesis
technique was developed [69]. However, these approaches are known to be conser-
vative for systems with constant real parameter uncertainties, i.e. the uncertainty
model in this work. Therefore, the real x4 and mixed p techniques were developed to
handle real parameter uncertainties [69-71]. In a series of papers, How et al. showed
how the upper bounds for mixed p are a generalization of the absolute stability cri-
terion, where linear and nonlinear real parameter uncertainties are analyzed [72]. In
addition, Popov controller synthesis was developed [73-75], where an #; performance
metric can now be introduced which gives a much tighter bound on the real parameter
uncertainty.

Multiple model techniques have been used recently to gain robustness to para-
metric uncertainty by designing controllers around several models of an uncertain
system [76,77]. Although there are no guarantees, less conservative closed loop re-
sults with a smaller amount of computation are usually achieved. Stochastic tech-
niques such as Maximum Entropy [78,79] have been developed which introduce a
multiplicative white noise model to capture the parameter uncertainty of the sys-
tem. De-sensitizing techniques usually take an already proven unrobust method such
as LQG and de-sensitize it to variations in parameters. For example, Blelloch and

Mingori [80] modify the state and noise weighting matrices in the LQG compensator
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design to account for structured parametric uncertainty, thus reducing optimality.
Sesak and Likins [81] add sensitivity states which penalize the variation of the perfor-
mance objective with respect to parameter variations. These states can be eliminated
from the model using a singular perturbation technique.

Although fairly ed hoc, classical techniques have been used for many years in
designing controllers, many of which had plants that were uncertain. More recently,
ties between classical and robust techniques have been made to gain insights into how

the robust methods work, and to develop better classical methods [82-85].

6.1.2 Controller Analysis

The objective of controller analysis is to examine stability of controllers around an
uncertain plant. Because of its close relationship to the synthesis of controllers, many
of the controller analysis techniques are directly linked to the controller synthesis
techniques. This is especially true of those design techniques which obtain stability
guarantees. The analysis techniques that are discussed here examine the stability of
any controller given a model of the plant and uncertainty.

The most simple analysis techniques are the classical graphical Nyquist and Nichols
plots which have been adapted to contain uncertainty [86]. For flexible systems, how-
ever, these techniques primarily address the higher frequency unmodeled dynamics
issue. Polynominal techniques such as Routh-Hurwitz [86] and Kharitinov’s Theo-
rem [87] examine the characteristic polynomial of the system to test stability. For
complicated plants, however, these results are very conservative.

Another type of analysis technique that was developed during the MACE program
is using the open loop data to predict the closed loop stability and performance [88].
The controller is wrapped around the open loop data to examine both the model and
data, using the Nichols and sensitivity plots. Although there are no guarantees, this
technique works quite well for systems which are primarily linear and repeatable. If
these conditions do not exist, the ability of the method to predict closed loop stability
and performance degrades.

The two methods that seem to work the best for the general case are a p test
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and Monte Carlo simulation. The g test [89] can be used to test for stability in
the presence of complex or real uncertainties. The same difficulties exist, however,
such as the real u test not being continuous [71]. The Monte Carlo simulation can
be performed where each of the parameters in the uncertainty model are allowed to
vary, and a large number of cases are run to test for stability. This has the obvious
limitations of large computational effort and no guarantees. A simplification of the
Monte Carlo simulation is analyzing the controller on only a few systems, as in the
multiple model controller synthesis. Although there are no guarantees, this drastically

reduces the required computational effort.

6.1.3 Utilization of the Uncertainty Model

In addition to the use of controller synthesis and analysis techniques, the use of the
uncertainty model in this process needs to be addressed. The uncertainty model is
in the form of mean errors and bounds on the frequencies, modes shapes, and even
damping (from 1-g). The next question is how to use all of this information in the
control design procedure.

Figure 6.2 shows four options of using the uncertainty model. Given the nominal
parameter set g, the uncertainty model consists of mean errors Af and bounds AD
on these parameters. The first option is the least conservative: shift the finite element
model by the mean errors to create a control design model for synthesis; analyze using
the predicted bounds as symmetric parameter variations. This case is termed “shifted-
symmetric”. The next two cases are intermediate, such that asymmetric parameter
variations are used, and the control synthesis model is either the original finite element
model shifted by the mean errors, or just the finite element model. These two cases
are termed “shifted-asymmetric” and “unshifted-asymmetric” respectively. The final
case is the most conservative one in which the finite element model itself is used for
controller synthesis, and the parameter variations are symmetric and include both
the predicted mean errors and bounds. This is shown in Figure 6.2 as the “shifted-
asymmetric” case. The choice of the application of the uncertainty model is made

based on the confidence of the prediction of the uncertainty model.
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Figure 6.2: Types of controller synthesis and analysis using an uncertainty
model

6.2 MACE 0—g Results

Controllers for the MACE flight were designed in terms of “families”. Each family
consisted of six to eight controllers, each designed the same type of robust control
technique. As each controller was designed, the next controller built on the knowl-
edge of the previous design, and increased the control authority. Therefore, the first
controller in a family was usually lower authority, while the last controller was de-
signed to really push the limits of the technique, finite element model, and uncertainty

model.

6.2.1 Controller Synthesis

Controller synthesis for the MACE flight took the form of two approaches. One
was the design of classically rationalized controllers as described in Ref. 85. While
these controllers worked quite well on-orbit, they did not perform as well as the
second optlon [44] The second opfion was a vblending- of technidﬁéé that were ex-
amined in Refs. 90, 88. First, a lower authority LQG controller [91] is designed to
understand tradeoff between the regulator and estimator, and areas where robust-
ness may be needed. Next, a de-sensitizing method called Sensitivity Weighted LQG
(SWLQG) [92,90] is used to add robustness to the LQG controller by making an
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adjustment to the state costs of the regulator and estimator problems. Finally, the
Multiple Model technique [76,77] is used as the final design to really push the limits
of controller authority. The SWLQG controller from the previous design is used as an
initial guess in the optimization. This blending of techniques has worked quite well
in designing high authority robust controllers in 1-g and 0-g. Although other robust
control design methods could handle the uncertainty model presented, the multiple
model technique, even though there are no closed loop guarantees,achieved the best
closed loop results for the computational effort needed. This factor of a lower com-
putational effort became a significant factor for redesign of controllers while MACE

was on-orbit.

6.2.2 Controller Analysis

Controller analysis for the MACE flight was again in two forms. The first was the
use of open data to predict the closed loop stability and performance by examining
the Nichols and sensitivity plots [88]. This method, however, could only be used
during the flight when open loop data was available (after it had been downlinked.)
Prior to flight, a mixed-u analysis using the finite element model and the predicted
uncertainty model was used [48,93]. This method is detailed here.

For the MACE flight, there were no uncertainties developed for the mode shapes.
Therefore, only uncertain frequencies and damping ratios were considered in the de-
velopment of the mixed-u analysis tool.

For a system represented in state space as

z = Az + Bu
y=Cz+ Du, (6.1)

the frequency and damping ratio variations are treated as uncertainties in the A
matrix of the system dynamics. Each mode of the system can be represented with a

2 X 2 matrix, Aaxg, of the following form
0 1

Asxa = ) (6.2)
—wg(l + 2aw<5w) —2(0(4)0(1 + a<6<)
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where 8,0, € [~1,1] are the uncertain real parameters and «, and o are real
scaling factors that represent the percent uncertainty in the frequency and damping
ratio, respectively. Note that for systems with lightly damped modes, ¢ <1 and for
a, < 1, treating uncertainty in the square of the frequency is a good approximation
to half the uncertainty in the frequency alone. This matrix can then be represented

using the internal feedback loop representation [94]

T = Ao.’E"I‘Bop

q = CoiII (63)
p = Ag.
where
0 1
AO = 9 y B(] = [ Bow BOC ] ; (64)
—wy  —2Cowo
Cow 0y O 0
CO = y A= ) BOw = 3
Co( 0 5( -—Zawwo
0
By = ,00w=[w0 0],Coc=[0 2(0]-
— Wy
With the uncertainty loops closed,
Agxo = Ag + BoACy, (6.5)

which is exactly as in Equation 6.2.

An analysis tool was sought which investigated the stability of the system for all
possible perturbations included in the uncertainty model. This type of uncertainty
lends itself to a real-p analysis of the system. However, because real y is not continu-
ous in the problem data [71], this tool cannot be used for the practical system such as
MACE. If a complex block could be added to the uncertainty, however, the problem
would be continuous, and therefore increase its usefulness for the MACE system.

Drawing upon the evaluation of controllers using data, where the sensitivity singu-

lar values are plotted using the model and data and discrepancies are used as a guide
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in designing robust controllers, a weighted sensitivity block is added. The sensitivity
transfer function (I + G(jw)K (jw))~!, provides a measure of how close to singular-
ity, i.e. instability, the closed loop system is. If the complex block is defined as the
weighted maximum singular value of the sensitivity, or 1/(ya(I + G(jw)K (jw))™),
the weighted complex block implies that no allowable parameter shift can cause the
sensitivity to peak more than v above the nominal sensitivity.

Large deviations between the singular values as calculated using the model and
using measured data indicate where modeling errors may cause stability problems. As
such, the weighting function used in the sensitivity loop is the inverse of the nominal
maximum singular value of the sensitivity.

The final aspect of the mixed-u analysis tool is the scale factor for the weighting
function. Obvious limits for this scaling factor are 1 and co. Using a scaling factor
of 1 tests whether or not the maximum singular value of the sensitivity transfer
function increases for any allowable perturbations. This is clearly too stringent a
test. Using a scaling factor of oo ignores the sensitivity loop altogether and tests only
stability. Through experimentation and comparing the sensitivity transfer function
calculated using both the model and measured data for compensators that stabilized
and destabilized the system, it was found that a scaling factor of 2 achieved good
prediction results. However, if the nominal sensitivity transfer function is large (> 3
or 4) over a particular frequency range, then a smaller scaling factor should be used.

Figure 6.3 shows the interconnection structure of uncertainty inputs and outputs
of this mixed-u test. The weighting function, W is the scaled ir;verse of the maximum
singular value of the nominal sensitivity transfer function. Stability of this system,
achieved if p < 1, implies that the deviation in the maximum singular value of
the sensitivity transfer function will be no more than a factor of 2 for any feasible

perturbation.

6.2.3 Utilization of the Uncertainty Model

For the MACE flight, the predicted 0-g uncertainty model was developed using the

matrix method presented in the previous chapter. The frequencies are shown in Fig-
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Figure 6.3: Interconnection of the open loop system (G), compensator (K),
real parameter uncertainty (Ag), and weighting on the Sensitivity
(W), and the Sensitivity delta block (Ag).

ure 5.2. Although the 0-g data was not available, it was known that the matrix
method did not provide a physically based solution. Therefore, confidence in the
prediction of the 0—g uncertainty model was lacking. Because of this, most of the
pre-programmed controllers for the MACE flight were designed using the most con-
servative utilization of the uncertainty model, or the “symmetric-unshifted” case in
Figure 6.2.

Figure 6.4 shows an example of how the mixed-x analysis tool and uncertainty
model were used in controller analysis and synthesis. The uncertainty model used is
the most conservative, unshifted-symmetric case. The parameters in the uncertainty
model are the frequencies an damping ratios only. Because of the difficulties in
predicting the 0-g damping, 50% variations were used in the uncertainty model.

Figure 6.4(a) is a plot of x for an LQG controller designed for a sample system.
Notice the high values of u in the 3.3, 10, and 17 Hz ranges. This indicates areas
that need to be addressed with robust control in the synthesis procedure. This is
accomplished in an iterative fashion. Figure 6.4(b) shows a plot of 4 for a SWLQG
controller on the same topology, at the same controller authority, and robustified
in each of the problem areas. Note the 3.3, 10, and 17 Hz ranges are all under 1,

indicating the design is robust to the given changes in the uncertainty model.
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Figure 6.4: Example of the usage of the mixed-u analysis tool, and the un-
certainty model.
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6.2.4 Closed Loop Results

The first set of closed loop results presented corresponds to the LQG and SWLQG
controllers evaluated in Figure 6.4. The topology is an X axis design, as shown in
Figure 5.1(a): the disturbance enters the X axis secondary gimbal; the performance
is the integrated X axis rate gyro in the primary payload; the inputs are the X and Y
axes reaction wheels; and the outputs are the X and Y axes rate gyros at the center
node, and the X axis rate gyro. Figure 6.5 shows the closed loop results for these
two controllers. Although the LQG controller is not unstable, it is quite sensitive in
each of the predicted areas: 3.3, 10, and 17 Hz. The SWLQG controller is stable and
quite robust, as predicted.

The next topology is the benchmark control topology. This topology is a two-
disturbance, five performance, five input, and five output system. Examining Config-
uration I of MACE in Figure 5.1(a), two disturbances enter into the secondary gimbal

in the X and Z axes; the five performances are each integrated rate gyros in the X
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and Z axes of the primary payload, and X, Y, and Z axes of the rate gyros at the
center node; the five inputs include the three reactions wheels at the center node, and
X and Z axes of the primary gimbal; and the five outputs are the five rate gyros at
the center node and in the primary payload.

Closed loop controllers were designed and implemented on MACE in 0-g to exam-
ine the tradeoffs of using the uncertainty model. Two controllers are examined for this
topology. The first was designed and analyzed using the most conservative, unshifted-
symmetric case in Figure 6.2. The second controller was designed and analyzed using
the most unconservative case of symmetric-shifted in Figure 6.2. Multiple-model
control design was used for both cases, although different authorities are presented
primarily because the less conservative case allowed for higher authority.

Figure 6.6 shows a plot of the combined closed loop metric as a function of fre-
quency. The performance metric weights the five individual performances with 1 for
each of the gimbal integrated rate gyros, and 0.1 for each of the center node rate
gyros, as this is a pointing experiment. The “Open Loop” system is self-explanatory;
the “Servos-Only” system is using the first layer of control which is the four encoder-
gimbal servo systems; “Unshifted-Symmetric FEM CST” is the best pre-programmed
high-authority controller using the unshifted finite element model and symmetric pa-
rameter variations covering both the predicted mean errors and bounds of the uncer-
tainty model; “Shifted-Symmetric CST” is the best pre-programmed high-authority
controller using the shifted finite element model and symmetric parameter variations
derived using only the predicted bounds of the uncertainty model. Notice that the
less conservative shifted-symmetric controller performs 2.3 dB (7%) better than the
unshifted-symmetric controller. This shows the benefits of using the the less conser-
vative shifted-symmetric approach for controller synthesis and analysis.

There are a few drawbacks, however, because of the inaccuracies of the matrix
method based uncertainty model. The first can be seen in the 17 Hz range as an
increase in sensitivity of the closed loop system. The 17 Hz mode was one of the
frequency errors that the matrix method based prediction was incorrect (Figure 5.2).

In addition, closed loop systems for both controllers are sensitive at 50 Hz, primarily
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Figure 6.6: MACE 0-g closed loop results using unshifted model/symmetric
bounds (FEM) and shifted model/symmetric bounds (shifted).

because the uncertainty model did not predict the large errors in this frequency
region. If the uncertainty model developed using the sensitivity method (Figure 5.6),
which provides physical, as well as mathematical results, these problems may not
have appeared.

It is debatable whether the increased performance was the result of good prediction
of mean errors, or reduced conservatism in the bounds, especially since the basis of
the uncertainty model used for the design of both controllers for flight was the non-
physical matrix method. In reality, it is probably a combination of both. It would be
interesting to test new controllers designed using the improved sensitivity method,

however, this is not a realistic scenario.

6.2.5 Analysis of Uncertainty Model

Although a redesign of controllers using the improved uncertainty model created using

the sensitivity method was not a realistic option for this work, analyzing controllers
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that have already been implemented can be done. Figure 6.7 shows the mixed-u plot
of the “Pre-prog. FEM CST” controller in figure 6.6 for three different uncertainty
models. Figure 6.7(a) shows the p plot for the most conservative unshifted-symmetric
case where the unshifted finite element model, and the symmetric parameter varia-
tions which cover both the predicted mean errors and bounds are used. Figure 6.7(b)
shows the u plot for the least conservative shifted-symmetric case where the finite
element model is shifted by the predicted mean errors, and the symmetric parameter
variations are just the predicted bounds of the uncertainty model. Figure 6.7(c) shows
the i plot for the actual 0-g uncertainty model: the 0—g finite element model shifted
by the mean errors from the 0-g data, and parameter variations consisting of the
parameter bounds from the 0-g data. The conservatism of the unshifted-symmetric
case prevented the controller from achieving even greater performance. The shifted-
symmetric case, however, is quite similar to the actual 0-g data, implying the use
of the uncertainty model generated from the sensitivity method would decrease the

conservatism of the designs, and therefore increase closed loop performance.
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Figure 6.7: Mixed-u analysis of a 5 x 5 XYZ controller using three types of
uncertainty models derived using the sensitivity method.
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Chapter 7

Conclusions

7.1 Summary

A set of methods to identify stochastic uncertainties between a finite element model
and set of hardware in a nominal environment, and to predict stochastic uncertainty
model a modified have been developed. The approach of this work is to first iden-
tify mean errors and bounds on critical parameters of the nominal system. These
uncertainties are then localized to specific degrees of freedom in order to form mass
and stiffness uncertainties. Once in this form, the uncertainties can be mapped and
projected into the modified system to create an analogous uncertainty model.

Many uncertainties exist, mean and variance, between a set of hardware and
structural model. In this work, a summary of these uncertainties is given. These are
described by first the large groupings of linear and nonlinear uncertainties. Linear
uncertainties are then sub-divided into the following groups: physical parameters such
as the geometric and material properties; modeling uncertainties such as discretization
and incorrect element physics; internal couplings such as joints and/or attachments
and actuator and sensor dynamics; external dynamics such as aerodynamic, gravity, or
closed loop coupling; testing uncertainties such as sensor and process noises and bias
errors. The nonlinear uncertainties can be subdivided into two categories: weak and
strong nonlinearities. Of these uncertainties, most are capturable using the methods

developed in this work except for the modeling uncertainties and strong nonlinearities.
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These two types of uncertainties cannot be represented with either a mass and/or
stiffness mean error or variance uncertainty.

Many of the uncertainties described can be found by thoroughly testing the struc-
ture. A testing summary is presented in this work which enables the observing of all
of the uncertainties, both mean and variance. These tests involve varying testing pa-
rameters such as actuators, disassembly/reassembly, time between tests, disturbance
levels, boundary conditions, and structural and non-structural changes.

The nominal or 1-g uncertainty model can be accurately described using mean
errors and bounds on the frequencies and mode shapes of the nominal system. These
are found by identifying the critical parameters of the system using an identification
procedure that parameterizes the finite element model, actuator and sensor dynam-
ics, and time delays separately. The Discrete Extended Kalman Filter (DEKF) was
the method used to identify the parameters, although other methods could also have
been used. The DEKF, in addition to estimating the parameters of the system, gives
additional information in the form of an measurement error covariance on the pa-
rameters. Although this matrix is not the exact measurement error, it does give
relative confidence factors in the estimation of the parameters. These confidence fac-
tors can then be used to find the weighted mean error and bound for each parameter
of the uncertainty model. The DEKF appeared to work quite well as an identi-
fication/parameter estimation method in all sample problems and on experimental
MACE data. Because only one identification/parameter estimation method was used,
however, a more thorough examination of these types of methods is in order.

Two methods for localizing the uncertainties and projecting them into a modi-
fied, or 0—-g environment have been developed. The first is called a matrix method,
which manipulates the first order perturbation equations of the structural eigenvalue
problem in order to develop the modified uncertainty model. The solution from this
method, however, may give results that may be non-physical, in that pseudoinverses
utilized during the derivation are on underdetermined systems. Therefore the mass
and stiffness matrices may be non-physical, implying difficulties with the projection

step. This was exemplified in the MACE examples, where the matrix method did not
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give consistent results.

A second method, termed the sensitivity method, builds on the first order pertur-
bation by adding a specific form to the mass and stiffness uncertainties. This form is
a combination of macroelements which represent possible physical uncertainties, and
scale factors. Although a pseudoinverse is again used in the derivation of the sensi-
tivity method, it is now on an overdetermined system, implying that the mass and
stiffness uncertainties, as well as the projected modified or 0-g uncertainty model,
are physically based, as well as mathematically based.

A practical algorithm using the sensitivity method is presented. This algorithm
consists of first examining the relative numbers of measured parameters and possible
mass and stiffness uncertainties. A layered approach is suggested, which first localizes
uncertainties in groups of elements, then reduces the number of these groups; local-
izes uncertainties in elements, then reduces the number of these elements; and then
localizes the uncertainties in sub-elements. In addition, if the mean uncertainties are
- large, an iterative procedure can be used where an eigenvalue problem is solved at
each step, after the mean error localization.

. The uncertainty localization and projection methods are demonstrated using both
a sample problem, and the Middeck Active Control Experiment (MACE). The sample
problem shows that the sensitivity method can be used to identify both mean error
and variance uncertainties in the physical mass and stiffness matrices using partial
information, i.e. a subset of measured modes and degrees of freedom. The matrix
method, because it is non-physical, can only solve for the correct physical uncertainties
by using all of the measured modes and degrees of freedom, which is not a realistic
scenario. The sensitivity method is therefore the best method to use for localization
and projection of uncertainties.

The MACE experiment gives experimental validation to the uncertainty model,
localization, and projection methods developed in this work. Because of large num-
ber of data sets for MACE in 0-g as well as 1-g, the 1-g to 0-g projection could be
completely examined. The sensitivity method performed quite well in predicting the

mean errors and bounds, while the matrix method predictably did not. The localiza-
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tion step of the sensitivity method was quite difficult for this example, however. This
is most likely caused by large errors in the modeling of gravity effects, and difficulties
in localizing superposable uncertainties such as physical modeling errors and gravity
modeling errors (using the small number of sensors given. It was therefore concluded
that not only should mode shape uncertainties be used along with frequency uncer-
tainties in the localization process, but a large number of sensors are needed for more
difficult problems such as the 1-g to 0—g projection.

In another example using MACE, the uncertainty model of a second “L” configu-
ration for MACE in 0-g was developed, based on the original straight configuration.
The uncertainty localization and projection worked very well for this example, and
did not have the difficulties of the 1-g to 0—g example. This was because there were
no superposable gravity uncertainties to localize, therefore simplifying the problem
immensely.

Finally, a chapter on utilizing an uncertainty model for control design and analysis
is presented. A summary of methods for controller synthesis and analysis that would
benefit from the use of an accurate uncertainty model is given. Four cases of utilizing
the uncertainty model are recommended, depending on the confidence of the user in
the uncertainty model. These are: shifted-symmetric, shifted-asymmetric, unshifted-
asymmetric, and unshifted-symmetric, where the (un)shift operator implies that the
critical parameters of the finite element model have been (un)shifted by the predicted
mean errors of the uncertainty model, and the (a)symmetric operator implies the
controller is designed and/or analyzed using (a)symmetric parameter variations cre-
ated using the uncertainty model. Two 0-g controllers from the MACE flight are
given which utilize the most conservative unshifted-symmetric case, and the least
conservative shifted-symmetric case. Although both controllers performed well, the
less conservative case performed slightly better, thus showing the usefulness of an
accurate uncertainty model for control design. The closed loop MACE experiments
showed that an accurate uncertainty model can be very helpful for controller synthesis

and analysis.

150



7.2 Contributions

1. Uncertainties or errors between a (finite element) model and set of hardware
have been detailed in many sources, although they are usually incomplete. This
work, however, gives the most complete description of structural modeling un-
certainties of its kind, along with a set of tests to identify them. In addition,
the uncertainties are uniquely identified as stochastic, rather than determin-
istic. Therefore, one of the more significant contributions of this work is the
development of an uncertainty model, which consists of bounds, as well as mean

errors, on critical parameters of a structural system.

2. Error localization and update methods for finite element models have been areas
of on-going research for the past few decades. This work develops an additional
method, called the matrix method, which localizes errors by manipulating the
first order perturbation matrices of the structural eigenvalue problem. Although
unique in its derivation, this method provides a non-physical solution. A sec-
ond method, called the sensitivity method, builds upon the work of Collins et
al. and Lallement et al. where a structure is given to the mass and stiffness
errors. Although this is an already proven method, this work extends the pre-
vious work by providing a complete algorithm for the practical localization of
errors. In addition, this work extends the sensitivity method in the significant
contribution of including variance uncertainties, as well as mean errors. This
provides the basis for modeling practical structures which are stochastic, rather

than deterministic in nature.

3. Application of the uncertainty localization and projection methods to the prob-
lem of structural control in a different environment is a significant contribution.
The idea of localizing mass and stiffness uncertainties in the nominal 1-g en-
vironment, and projecting them into the modified 0-g environment using the
finite element models is quite unique. This allows the development of an uncer-
tainty model in an environment that is distinct from the original, i.e. modified

or 0-g.
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4. Because of the success of the MACE experiment, a large set of data in both 1-g
and 0—g has been collected which has allowed the experimental validation of the
methods developed in this work. Two examples were used for this validation:
the complex 1-g to 0-g transition, and the 0-g Configuration I to Configuration
IT change. For each example, excellent prediction of mean errors and bounds

on parameters critical to control design on the system was shown.

5. The final contribution follows from the utilization of the uncertainty model for
control design. Four methods of this utilization are presented, two of which
were demonstrated during the MACE flight. In addition, the prediction of the
0-g uncertainty model for MACE was one of the significant contributing factors
in the design and evaluation of over 200 pre-programmed controllers which were

stable on-orbit.

7.3 Recommendations

1. Although the summary of model uncertainties given in this work is one of the
most thorough of its kind, because the uncertainties are considered stochas-
tic, more work needs to be done in examining how these uncertainties manifest
themselves into the model. Specifically, how the modeling uncertainties such as
discretization errors and incorrect element physics, and nonlinearities manifest
themselves into the uncertainty model, and subsequent localization and projec-
tion is not known. It was assumed that these are small, or could be represented
using mean error and variance uncertainties. An examination of a small order
example with a weak nonlinearity, for instance, would add iriézi;ght—:ég the local-
ization and projection methodrs, as well as adding confidence in their application

to systems with such modeling uncertainties.

2. The modeling of gravity effects for MACE was shown to be suspect because
the 1-g to 0—g transition of the model and data were significantly different. A

more thorough examination of the modeling of these effects should be done.
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This probably means a more thorough set of open loop test, 1.e. more sensors.
More sensor give more information on the mode shapes, and therefore better
model updating and uncertainty localization. Additional sensors such as ac-
celerometers on the nodes and suspension cables would give more insight into

the modeling of the gravity effects, and update of the finite element model.

. The Discrete Extended Kalman Filter (DEKF) was used to estimate the param-
eters of the system, and therefore identify the modal. Although an identification
technique is needed which parameterizes the finite element model and actua-
tor/sensor dynamics and time delays separately, the DEKF is not necessarily
the best choice. For instance, there are no guarantees against bias errors. An
examination of the parameter estimation techniques is needed to create the best
uncertainty model. This can only be done using a detailed examination of the

benefits and drawbacks of each correctly parameterized identification technique.

. With a retesting of the MACE hardware, another examination of the methods
localization and projection methods can be made using the additional sensors.
In addition, the iterative procedure suggested for systems with larger errors can
be employed in order to accurately identify the model errors. This requires a
sparse matrix eigenvalue solver which can handle large systems (greater than

500 degrees of freedom), and rigid body modes.

. The practical iterative procedure for localizing the mean errors in a finite ele-
ment model needs to be examined for the localization of variance uncertainties
also. This requires the solution of a nonlinear statistics problem which is quite

difficult.

. The final recommendation involves the use of the uncertainty model in control
design. Controller synthesis and analysis techniques which use an uncertainty
model usually design and analyze a controller for all possible perturbations of
the uncertainty model. If the physical basis of the uncertainty model is a lower

rank, however, this may be overly conservative. For instance, if there is an
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error in the density of one finite element, all of the frequencies and mode shapes
change. Controller synthesis and analysis techniques will usually design for all
perturbations of the uncertainty model. This is quite conservative, however,
because there is only one perturbation. Additional work should be done in
attempting to reduce this uncertainty model, based on the physical mass and

stiffness uncertainties.
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